we see that $\alpha_i(n_k) - \beta_i(n_k)$ is a simple random walk on \mathbb{Z} with an absorbing state at 0. Recurrence of simple random walk on \mathbb{Z} implies that $\lim_{n\to\infty} \alpha_i(n) - \beta_i(n) = 0$ a.s. Since this is true for all i, we conclude that $\mathbf{P}[X_n \neq Y_n] \to 0$ as $n \to \infty$. Finally, since h_1 and h_2 are arbitrary, f must be constant.

§7. Embeddings of Finite Metric Spaces.

Definition An invertible mapping $f: X \to Y$, where (X, d_X) and (Y, d_Y) are metric spaces, is a C-embedding if there exists a number r > 0 such that for all $x, y \in X$

$$rd_X(x,y) \leq d_Y(f(x),f(y)) \leq Crd_X(x,y)$$
.

The infimum of numbers C such that f is a C-embedding is called the distortion of f and is denoted by dist(f). Equivalently, $dist(f) = ||f||_{Lip} ||f^{-1}||_{Lip}$, where

$$||f||_{\text{Lip}} = \sup \left\{ \frac{d_Y(f(x), f(y))}{d_X(x, y)} : x, y \in X, x \neq y \right\}.$$

We will be interested in embeddings of finite metric spaces and in application of Markov type 2 results to prove lower bounds on distortions of embeddings of certain spaces. We will see that the any embedding of the hypercube $\{0,1\}^k$ in Hilbert space has distortion at least $c\sqrt{k}$, for some c>0 (Enflo, 1969). In Exercise 2 we will show by Markov type arguments that any embedding of an expander family into Hilbert space has distortion at least $\Omega(\log n)$. This was originally shown by Linial, London and Rabinovich (1995) to prove that a theorem of Bourgain (1985), stating that any metric on n points can be embedded in $\ell_p^{\log n}$ with distortion $O(\log n)$, is tight.

We first prove a dimension reduction lemma due to Johnson and Lindenstrauss (1984).

LEMMA 7.1. For any $0 < \epsilon < 1/2$ and $v_1, \ldots, v_n \in \mathbb{R}^n$ with Euclidean metric, there exists a linear map $A : \mathbb{R}^n \to \mathbb{R}^k$ where $k = O(\log n/\epsilon^2)$, with distortion at most $1 + \epsilon$ on the n point space $\{v_1, \ldots, v_n\}$.

Proof. Let $A = \frac{1}{\sqrt{k}}(X_i^{(j)})_{1 \le i \le n, 1 \le j \le k}$ be an $n \times k$ matrix where the entries $X_i^{(j)}$ are independent standard normal N(0,1) random variables. We prove that with positive probability this map has distortion at most $1 + \epsilon$. For any $i \ne j$, let $u = \frac{v_i - v_j}{\|v_i - v_j\|} \in S^{n-1}$, and denote $u = (u_1, \ldots, u_n)$. Clearly,

$$uA = \frac{1}{\sqrt{k}} \left(\sum_{i=1}^{n} u_i X_i^{(1)}, \dots, \sum_{i=1}^{n} u_i X_i^{(k)} \right).$$

So

$$||uA||^2 = \frac{1}{k} \sum_{j=1}^k \left(\sum_{i=1}^n u_i X_i^{(j)} \right)^2.$$

Note that for any j the sum $\sum_{i=1}^{n} u_i X_i^{(j)}$ is distributed as a standard normal random variable with mean 0, and since $\sum_{i=1}^{n} u_i^2 = 1$, the variance is 1. So $||uA||^2$ is distributed as $\frac{1}{k} \sum_{j=1}^{k} Y_j^2$, where Y_1, \ldots, Y_k are independent standard normal N(0,1) random variables. We wish to show that uA is concentrated around its mean. To achieve that we compute the moment generating function of Y^2 where $Y \sim N(0,1)$. For any real $\lambda < 1/2$ we have

$$\mathbf{E}e^{\lambda Y^2} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{\lambda y^2} e^{-y^2/2} dy = \frac{1}{\sqrt{1-2\lambda}},$$

and using Taylor expansion we get

$$\varphi(\lambda) = |\log \mathbf{E}e^{\lambda(Y^2 - 1)}| = |-\frac{1}{2}\log(1 - 2\lambda) - \lambda|$$
$$= \sum_{k=2}^{\infty} \frac{2^{k-1}\lambda^k}{k} \le 2\lambda^2(1 + 2\lambda + (2\lambda)^2 + \cdots) = \frac{2\lambda^2}{1 - 2\lambda}.$$

Now,

$$\mathbf{P}[\|uA\|^2 > 1 + \epsilon] = \mathbf{P}\left[e^{\lambda \sum_{i=1}^k (Y_j^2 - 1)} > e^{\lambda \epsilon k}\right] \le e^{-\lambda \epsilon k} e^{k\varphi(\lambda)} \le \exp\left(-\lambda \epsilon k + \frac{2\lambda^2 k}{1 - 2\lambda}\right).$$

Taking $\lambda = \epsilon/4$ and $k \ge 24 \log n/\epsilon^2$, and recalling that $\epsilon < 1/2$, yields

$$\mathbf{P}[\|uA\|^2 > 1 + \epsilon] \le \exp(-\epsilon^2 k/12) \le n^{-2}$$
.

One can prove similarly that

$$P[||uA||^2 < 1 - \epsilon] \le n^{-2}$$
.

Since we have $\binom{n}{2}$ pairs of vectors v_i, v_j we showed that with positive probability, for all $i \neq j$,

$$(1 - \epsilon) \|v_i - v_j\| \le \|v_i A - v_j A\| \le (1 + \epsilon) \|v_i - v_j\|$$

which implies that the distortion of A is no more than $1 + \epsilon$.

REMARK 7.2. From algorithmic perspective it is important to achieve Lemma 7.1 using i.i.d., ± 1 with probability 1/2, random variables as our $X_i^{(j)}$. This is in fact possible for any random variable X for which there exists a constant C > 0 such that $\mathbf{E}e^{\lambda X} \leq e^{C\lambda^2}$

(for $X = \pm 1$ with probability 1/2 we have $\mathbf{E}e^{\lambda X} = \cosh(\lambda) \leq e^{\lambda^2/2}$) by the following argument:

Let $Y = \sum_{i=1}^k u_i X_i$ with $\sum_{j=1}^k u_j^2 = 1$ and let Z be distributed N(0,1) independently of $\{X_i\}$. Recall that for all real α we have $\mathbf{E}e^{\alpha Z} = e^{\alpha^2/2}$. Since Y and Z are independent, using Fubini's Theorem we get that for any $\lambda < \frac{C}{2}$

$$\begin{split} \mathbf{E}e^{\lambda Y^2} &= \mathbf{E}e^{\frac{(\sqrt{2\lambda}Y)^2}{2}} = \mathbf{E}e^{\sqrt{2\lambda}YZ} = \mathbf{E}e^{\sum_{i=1}^k \sqrt{2\lambda}u_iX_iZ} = \mathbf{E}\mathbf{E}\left[e^{\sum_{i=1}^k \sqrt{2\lambda}u_iX_iZ} \mid Z\right] \\ &\leq \mathbf{E}e^{C\sum_{i=1}^k \lambda u_i^2Z^2} = \mathbf{E}e^{C\lambda Z^2} = \frac{1}{\sqrt{1-2C\lambda}} \,, \end{split}$$

and the rest of the argument is the same as Lemma 7.1.

THEOREM 7.3. (Bourgain, 1985) Every n-point metric space (X, d) can be embedded in an $O(\log n)$ -dimensional Euclidean space with an $O(\log n)$ distortion.

Proof. We follow Linial, London and Rabinovich (1995). Let $\alpha > 0$ be determined later. For each cardinality k < n which is a power of 2, randomly pick $\alpha \log n$ sets $A \subset X$ independently, by including each $x \in X$ with probability 1/k. We have drawn $O(\log^2 n)$ sets $A_1, \ldots, A_{O(\log^2 n)}$. Map every vertex $x \in X$ to the vector

$$\frac{1}{\log n}(d(x,A_1),d(x,A_2),\ldots).$$

Denote this mapping by f. We will show this mapping to $\ell_2^{O(\log^2 n)}$ has almost surely $O(\log n)$ distortion, and using Lemma 7.1 this yields the required result.

It is easy to observe that this map is not expanding. By the triangle inequality, for any $x, y \in X$ and any $A_i \subset X$ we have $|d(x, A_i) - d(y, A_i)| \le d(x, y)$, so

$$||f(x) - f(y)||_2^2 \le \frac{1}{\log^2 n} \sum_{i=1}^{\alpha \log^2 n} |d(x, A_i) - d(y, A_i)|^2 \le \alpha d(x, y)^2.$$

For the lower bound, let $B(x,\rho)=\{y\in X|d(x,y)\leq\rho\}$ and $B^o(x,\rho)=\{y\in X|d(x,y)<\rho\}$ denote the closed and open balls of radius ρ centered at x. Consider two points $x\neq y\in X$. Let $\rho_0=0$, and let ρ_t be the least radius ρ for which both $|B(x,\rho)|\geq 2^t$ and $|B(y,\rho)|\geq 2^t$. We define ρ_t as long as $\rho_t<\frac{1}{4}d(x,y)$, and let \hat{t} be the largest such index. Also let $\rho_{\hat{t}+1}=\frac{d(x,y)}{4}$. Observe that $B(y,\rho_j)$ and $B(x,\rho_i)$ are always disjoint.

Notice that $A \cap B^{o}(x, \rho_{t}) = \emptyset \iff d(x, A) \geq \rho_{t}$, and $A \cap B(y, \rho_{t-1}) \neq \emptyset \iff d(y, A) \leq \rho_{t-1}$. Therefore, if both conditions hold, then $|d(y, A) - d(x, A)| \geq \rho_{t} - \rho_{t-1}$.

Let us assume that $|B^o(x, \rho_t)| < 2^t$ (otherwise we argue for y). On the other hand, $|B(y, \rho_{t-1})| \ge 2^{t-1}$. Let $k = 2^t$ and let $A \subset X$ be chosen randomly by including each $x \in X$ with probability 1/k. We have

$$P[A \text{ misses } B^o(x, \rho_t)] \ge (1 - 2^{-t})^{2^t} \ge \frac{1}{4},$$

and

$$\mathbf{P}[A \text{ hits } B(y, \rho_{t-1})] \ge 1 - (1 - 2^{-t})^{2^{t-1}} \ge 1 - e^{-1/2} \ge \frac{1}{2}.$$

Since these events are independent, such an A has probability at least $\frac{1}{8}$ to both intersect $B(y, \rho_{t-1})$ and miss $B^o(x, \rho_t)$. Since for each k we choose $\alpha \log n$ such sets, by Theorem 1.1, the probability that less than $\frac{\alpha \log n}{16}$ of them have the previous property is less than

$$e^{-2(\alpha \log n/16)^2/(\alpha \log n)} \le n^{-\alpha/128} \le n^{-5}$$

by choosing α such that $\alpha/128 > 5$. So with probability tending to 1, for any $x, y \in X$ and k we have at least $\alpha \log n/16$ sets which satisfy the condition. Summing it up gives

$$||f(x) - f(y)||_2^2 \ge \frac{1}{\log^2 n} \sum_{i=1}^{\hat{t}+1} \frac{\alpha \log n}{16} (\rho_i - \rho_{i-1})^2.$$

Since $\sum_{i=1}^{\hat{t}+1} (\rho_i - \rho_{i-1}) = \rho_{\hat{t}+1} = \frac{d(x,y)}{4}$, we have

$$||f(x) - f(y)||_2^2 \ge \frac{\alpha}{16 \log n} \left(\frac{d(x,y)}{4(\hat{t}+1)} \right)^2 (\hat{t}+1) \ge \frac{\alpha d(x,y)^2}{256(\hat{t}+1) \log n} \ge \frac{\alpha d(x,y)^2}{256 \log^2 n},$$

hence the distortion of f is $O(\log n)$ with probability tending to 1.

PROPOSITION 7.4. (Enflo, 1969) There exists c > 0 such that any embedding of the hypercube $\{0,1\}^k$ in Hilbert space has distortion at least $c\sqrt{k}$.

Proof. Recall that in Exercise 1 of Chapter 3 we proved that if $\{X_j\}$ is a simple random walk in the hypercube, then

$$\mathbf{E}d(X_0,X_j)\geq rac{j}{2} \qquad \forall j\leq k/4.$$

Take $j = \frac{k}{4}$. By Jensen's inequality, $\mathbf{E}d^2(X_0, X_{k/4}) \ge k^2/64$. Now let $f : \{0, 1\}^k \to L^2$ be a map. Assume without loss of generality that f is a non-expanding, i.e., $||f||_{\mathrm{Lip}} = 1$ (otherwise, take $f/||f||_{\mathrm{Lip}}$). By Theorem 3.1 it follows that L^2 has Markov type 2 with constant M = 1, so,

$$\mathbf{E}d^2\Big(f(X_0), f(X_{k/4})\Big) \le k.$$

We conclude

$$||f^{-1}||_{\text{Lip}}^2 k \ge ||f^{-1}||_{\text{Lip}}^2 \mathbf{E} d^2(f(X_0), f(X_{k/4})) \ge \mathbf{E} d^2(X_0, X_{k/4}) \ge k^2/64$$

hence $||f^{-1}||_{\text{Lip}} \geq \frac{\sqrt{k}}{8}$, which implies the result.

Remark 7.5. Enflo's original proof gives c = 1. See Exercise 1 for the proof of this fact.

We now prove a theorem of Bourgain (1986).

THEOREM 7.6. Any embedding of a binary tree of depth M and $n = 2^{M+1} - 1$ vertices into a Hilbert space has distortion $\Omega(\sqrt{\log M}) = \Omega(\sqrt{\log \log n})$.

REMARK 7.7. See Exercise 3 for an embedding with distortion $O(\sqrt{\log M})$.

We first prove two lemmas.

LEMMA 7.8. Let $M = 2^m$ for $m \ge 1$ and $y_0, \ldots, y_n \in \mathbb{R}$, then

$$\sum_{i=1}^{M} (y_i - y_{i-1})^2 = \frac{(y_M - y_0)^2}{M} + \sum_{k=1}^{m} \frac{1}{2^k} \sum_{j=1}^{2^{m-k}} (y_{j2^k} - 2y_{(2j-1)2^{k-1}} + y_{(j-1)2^k})^2.$$

Proof. This can be proved by induction on m, however, we will prove it using Parseval's identity. Consider the Haar orthonormal basis of \mathbb{R}^M which is defined by the following vectors: for any $1 \leq k \leq m$ and any $1 \leq j \leq 2^{m-k}$ let I(k;j) denote the set of indices $\{(j-1)2^k+1,\ldots,j2^k\}$ and define

$$\psi_{I(k;j)}(i) = \begin{cases} \frac{1}{2^{k/2}}, & (j-1)2^k < i \le (2j-1)2^{k-1}; \\ -\frac{1}{2^{k/2}}, & (2j-1)2^{k-1} < i \le j2^k. \end{cases}$$

Together with the vector $\psi_1 = \frac{1}{\sqrt{M}}(1,\ldots,1)$ this gives 2^m orthonormal vectors in \mathbb{R}^M . Now define $z \in \mathbb{R}^M$ by $z_i = y_i - y_{i-1}$, so the LHS of the lemma becomes $\sum_{i=1}^M z_i^2$, which, by Parseval's identity, is

$$\langle z, z \rangle = \langle z, \psi_1 \rangle^2 + \sum_{k=1}^m \sum_{j=1}^{2^{m-k}} \langle z, \psi_{I(k;j)} \rangle^2,$$

which can easily be seen to be the RHS of the lemma.

LEMMA 7.9. Let $M=2^m$, and suppose that Y_0,Y_1,\ldots is a function of a Markov chain taking values in Hilbert space. For any $1 \le k \le m$ and $1 \le j \le 2^{m-k}$ let $r=(2j-1)2^{k-1}$ and let $\tilde{Y}(k;j)$ denote the random process which is equal to $\{Y_t\}$ for time $t \le r$ and evolves independently for time t > r. Write $\mathcal{A}_{i=1}^M(\cdot) = \frac{1}{M} \sum_{i=1}^M (\cdot)$ for the averaging operator. Then

$$\mathbf{E}\left[\mathcal{A}_{i=1}^{M}\|Y_{i}-Y_{i-1}\|^{2}\right] \geq \mathbf{E}\left[\frac{1}{2}\sum_{k=1}^{m}\mathcal{A}_{j=1}^{2^{m-k}}\frac{\|Y_{j2^{k}}-\tilde{Y}_{j2^{k}}(k;j)\|^{2}}{2^{2k}}\right].$$

Proof. Since all the distances in the lemma are squared, we can assume without loss of generality that $\{Y_t\}$ is real valued. Let k, j be as in the lemma. Write $\mathbf{E}_r(\cdot) = \mathbf{E}[\cdot \mid Y_r]$

and $\tilde{Y} = \tilde{Y}(k;j)$. Let t > r and denote $\mu_r = \mathbf{E}_r[Y_t]$. Note that by the definition of \tilde{Y} , we have that Y_t and \tilde{Y}_t are independent given Y_r , and so $\mathbf{E}_r[Y_t\tilde{Y}_t] = \mathbf{E}_r[Y_t]\mathbf{E}_r[\tilde{Y}_t]$. Also, since Y_t has the same distribution as \tilde{Y}_t , we have

$$|\mathbf{E}_r|Y_t - \tilde{Y}_t|^2 = \mathbf{E}_r|(Y_t - \mu_r) - (\tilde{Y}_t - \mu_r)|^2 = 2\mathbf{E}_r(Y_t - \mu_r)^2 \le 2\mathbf{E}_r(Y_t - \lambda_r)^2$$

for any λ_r which is Y_r -measurable. The last inequality follows from the fact that $\mathbf{E}_r(Y_t - \mu_r)^2$ is the squared length of the projection of Y_t on the space of Y_r -measurable functions. Taking expectation w.r.t to Y_r on the last inequality gives

$$\mathbf{E}(Y_t - \lambda_r)^2 \ge \frac{1}{2} \mathbf{E}(Y_t - \tilde{Y}_t)^2. \tag{7.1}$$

Now apply Lemma 7.8 with $y_i = Y_i$:

$$\mathcal{A}_{i=1}^{M}(Y_{i}-Y_{i-1})^{2} \geq \sum_{k=1}^{m} \mathcal{A}_{j=1}^{2^{m-k}} \frac{(Y_{j2^{k}}-2Y_{(2j-1)2^{k-1}}+Y_{(j-1)2^{k}})^{2}}{2^{2k}}.$$

Take expectations and apply (7.1) with $\lambda_r = -2Y_{(2j-1)2^{k-1}} + Y_{(j-1)2^k}$ to get

$$\mathbf{E} \mathcal{A}_{i=1}^{M} (Y_i - Y_{i-1})^2 \ge \frac{1}{2} \sum_{k=1}^{m} \mathbf{E} \mathcal{A}_{j=1}^{2^{m-k}} \frac{(Y_{j2^k} - \tilde{Y}_{j2^k}(k;j))^2}{2^{2k}},$$

as required.

Proof of Theorem 7.6. Let T denote the full binary tree with depth $M=2^m$ (for general depths, consider the tree up to depth which a power of 2). Let $\{Z_i\}$ be the forward random walk on it starting from the root (i.e., at each vertex it goes right/left with probability 1/2). Clearly $d(Z_i, Z_{i+1})^2 = 1$ a.s., so $\mathbf{E} \mathcal{A}_{i=1}^M d(Z_i, Z_{i-1})^2 = 1$. Also, in the forward random walk, after the splitting at time r, with probability 1/2 the two independent walks will accumulate distance which is twice the number of steps. Thus, $\mathbf{E} d^2(Z_{j2^k}, \tilde{Z}_{j2^k}(k;j)) \geq 2^{2k-1}$, and we get that

$$\mathbf{E} \mathcal{A}_{i=1}^{M} d^{2}(Z_{i}, Z_{i-1}) = 1 \leq \frac{2}{m} \sum_{k=1}^{m} \mathbf{E} \mathcal{A}_{j=1}^{2^{m-k}} \frac{d^{2}(Z_{j2^{k}}, \tilde{Z}_{j2^{k}}(k; j))}{2^{2k}}.$$

Now let $F: T \to H$ be an embedding with $||F||_{\text{Lip}} = 1$, then the previous inequality holds for $F(Z_i)$ up to a factor of $||F^{-1}||_{\text{Lip}}$, i.e.

$$\mathbf{E} \mathcal{A}_{i=1}^{M} d^{2}(F(Z_{i}), F(Z_{i-1})) \leq \frac{2\|F^{-1}\|_{\text{Lip}}^{2}}{m} \sum_{k=1}^{m} \mathbf{E} \mathcal{A}_{j=1}^{2^{m-k}} \frac{d^{2}(F(Z_{j2^{k}}), F(\tilde{Z}_{j2^{k}}(k; j)))}{2^{2k}}.$$

By Lemma 7.9 we have

$$\mathbf{E} \mathcal{A}_{i=1}^M d^2(F(Z_i), F(Z_{i-1})) \geq \mathbf{E} \left[\frac{1}{2} \sum_{k=1}^m \mathcal{A}_{j=1}^{2^{m-k}} \frac{d^2(F(Z_{j2^k}) - F(\tilde{Y}_{j2^k}(k;j)))}{2^{2k}} \right],$$

which, combined with previous inequality, yields $||F^{-1}||_{Lip}^2 \geq \frac{m}{4}$, as required.