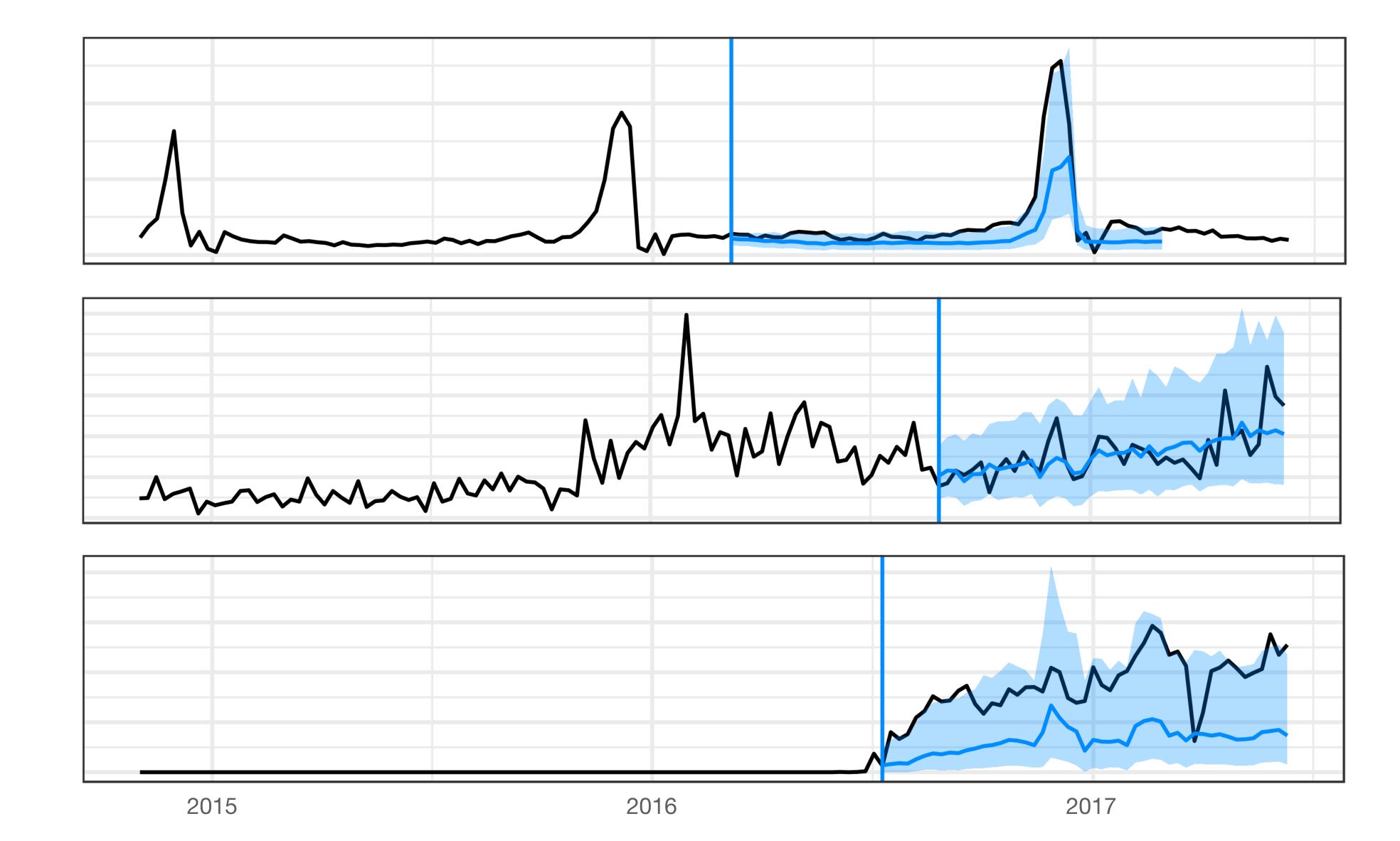
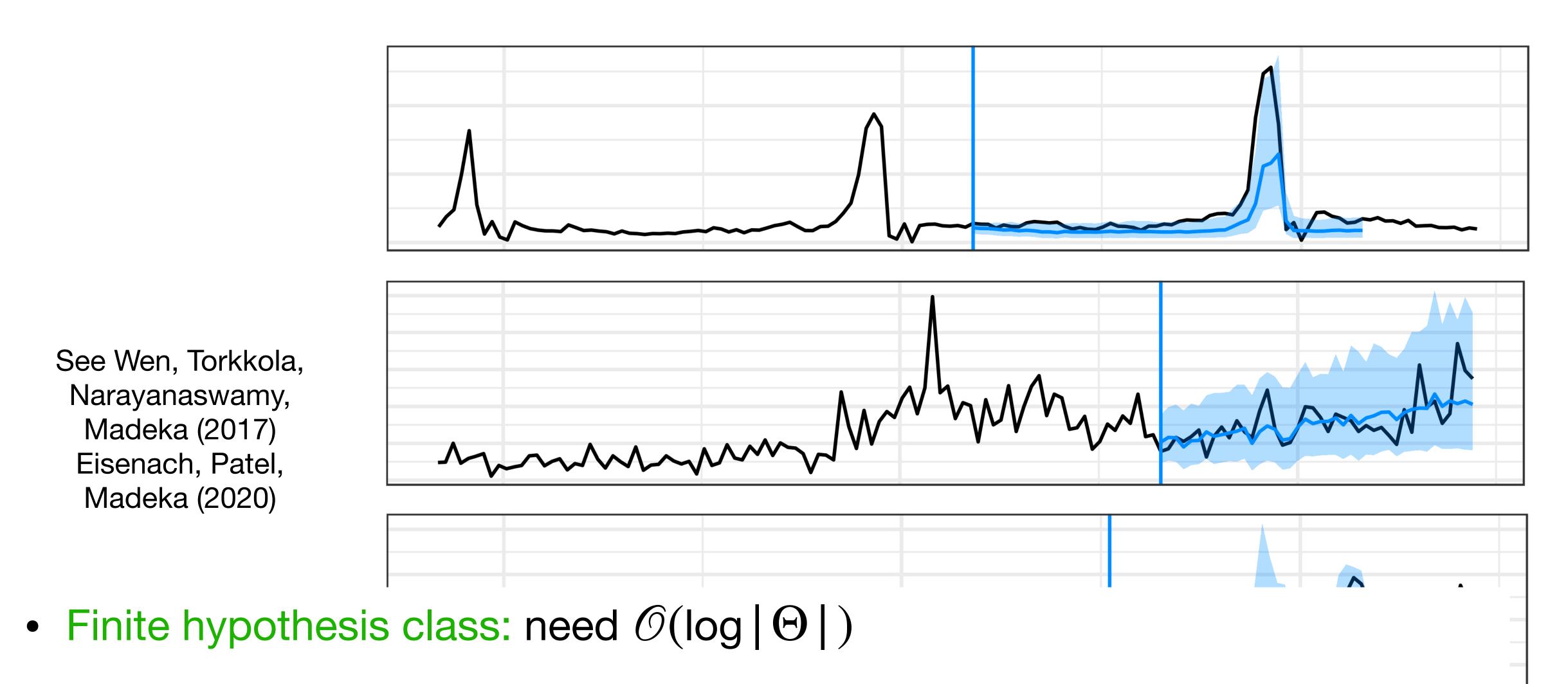
Reinforcement Learning for Supply Chains

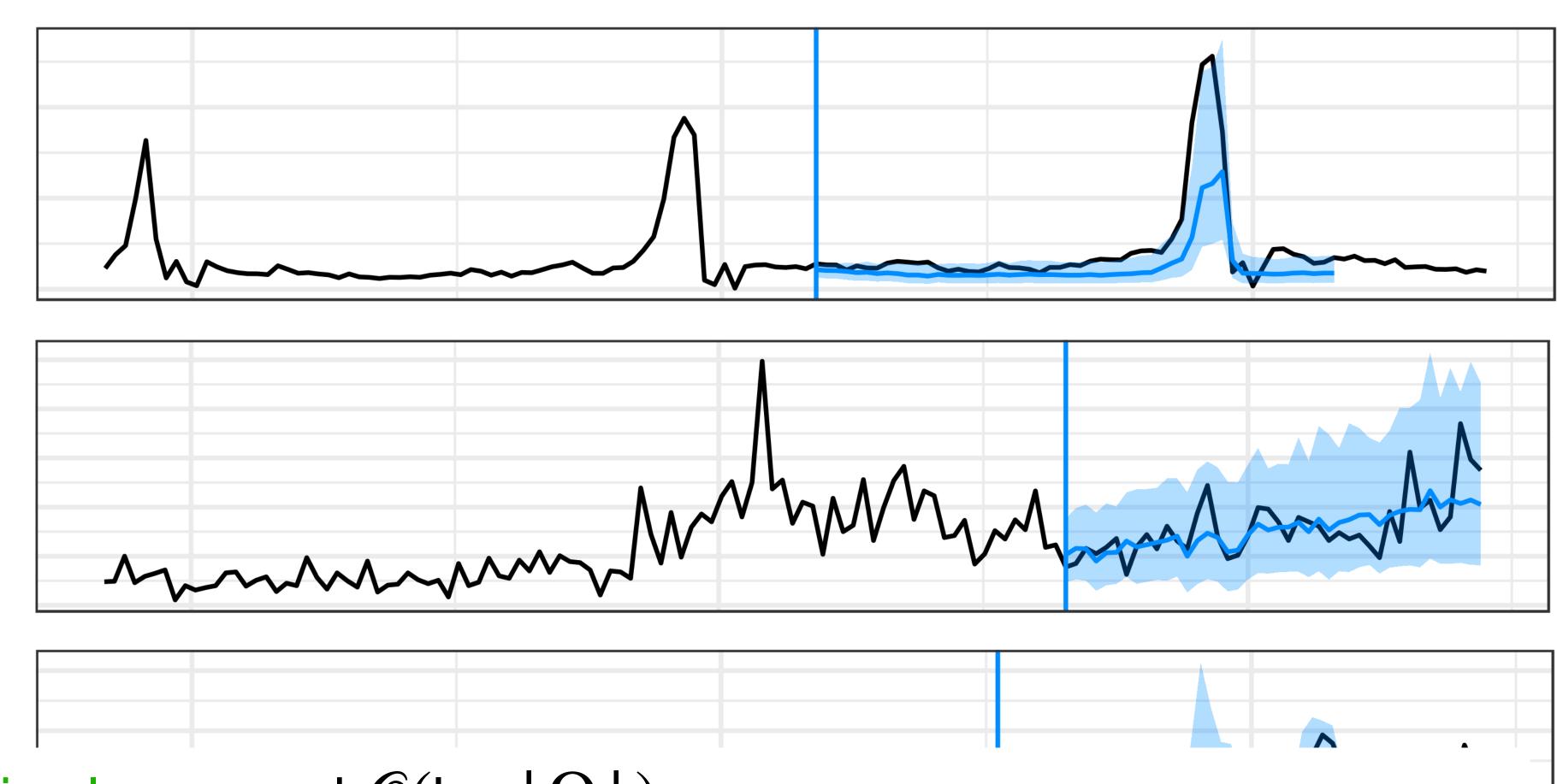
Dean Foster

Amazon



See Wen, Torkkola, Narayanaswamy, Madeka (2017) Eisenach, Patel, Madeka (2020)





• Finite hypothesis class: need $\mathcal{O}(\log |\Theta|)$

See Wen, Torkkola,

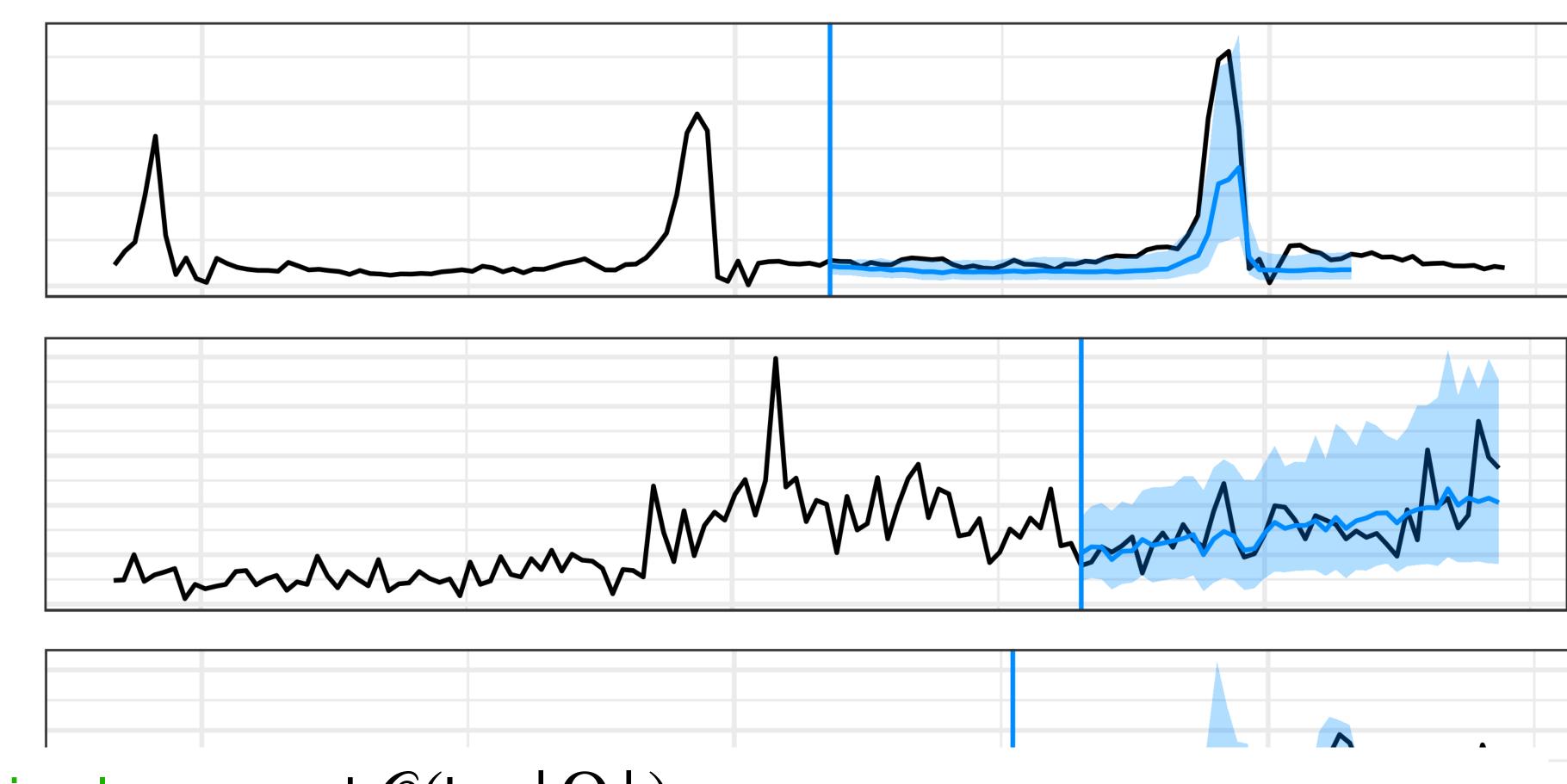
Narayanaswamy,

Madeka (2017)

Eisenach, Patel,

Madeka (2020)

• Supervised Learning: We can generalize from iid data

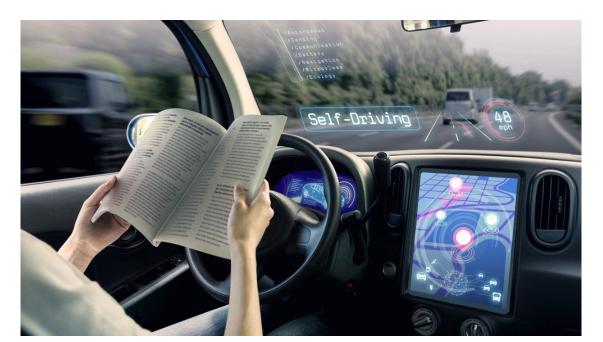


- See Wen, Torkkola, Narayanaswamy, Madeka (2017) Eisenach, Patel, Madeka (2020)
- Finite hypothesis class: need $\mathcal{O}(\log |\Theta|)$
- Supervised Learning: We can generalize from iid data

Data reuse: We can compute the loss of every function in a hypothesis class

Google DeepMind Challenge Match LEE SEDOL 00:28:28

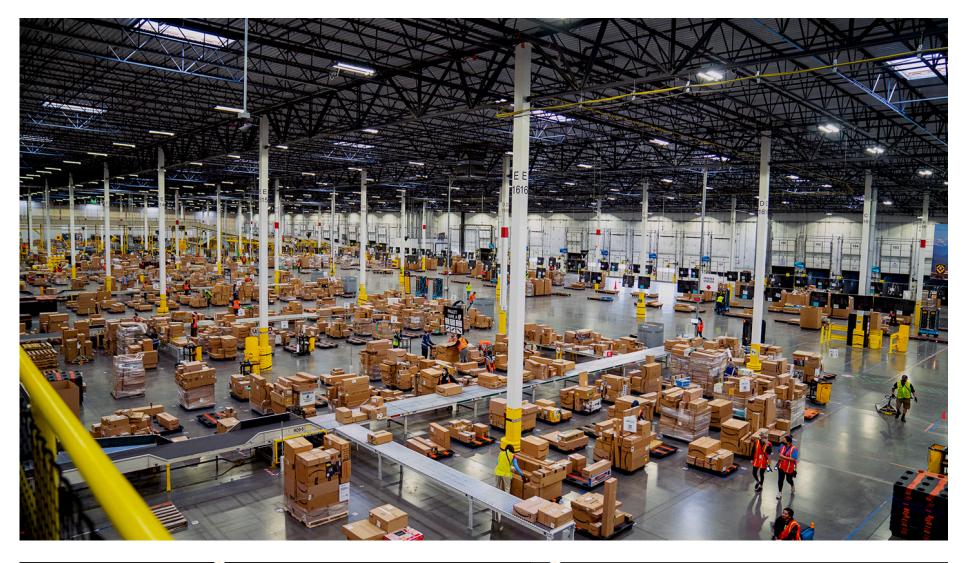


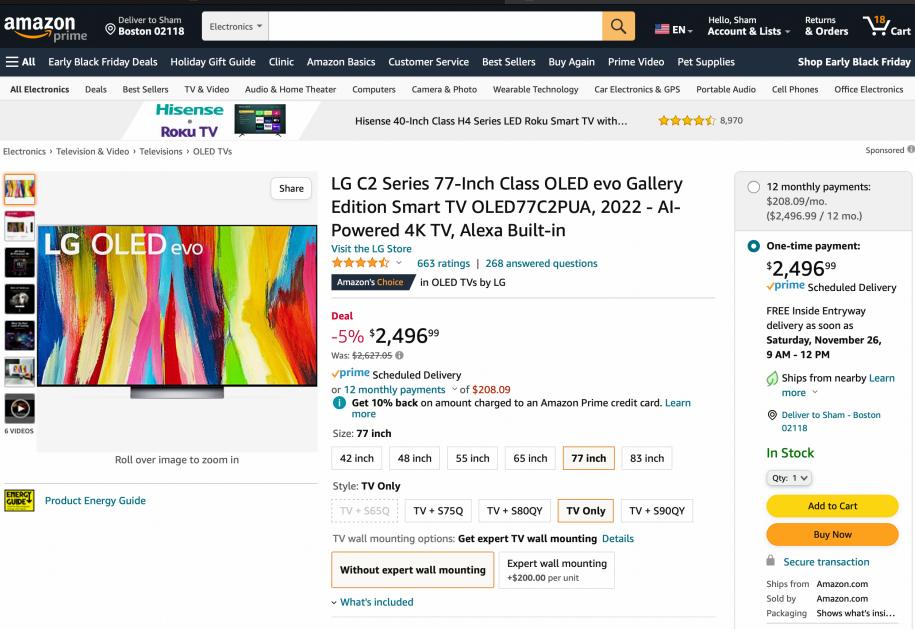


Real-world RL is hard.

The core challenges Amazon faces are sequential decision making problems.

Can RL help in this space?

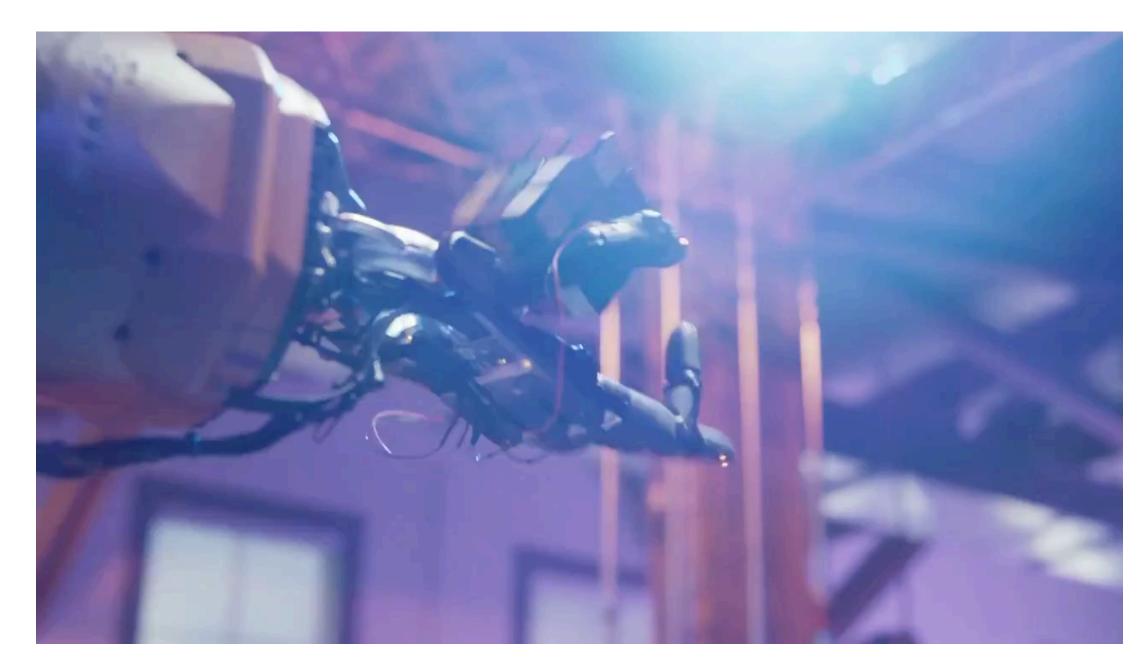




Dexterous Robotic Hand Manipulation
OpenAl, '19

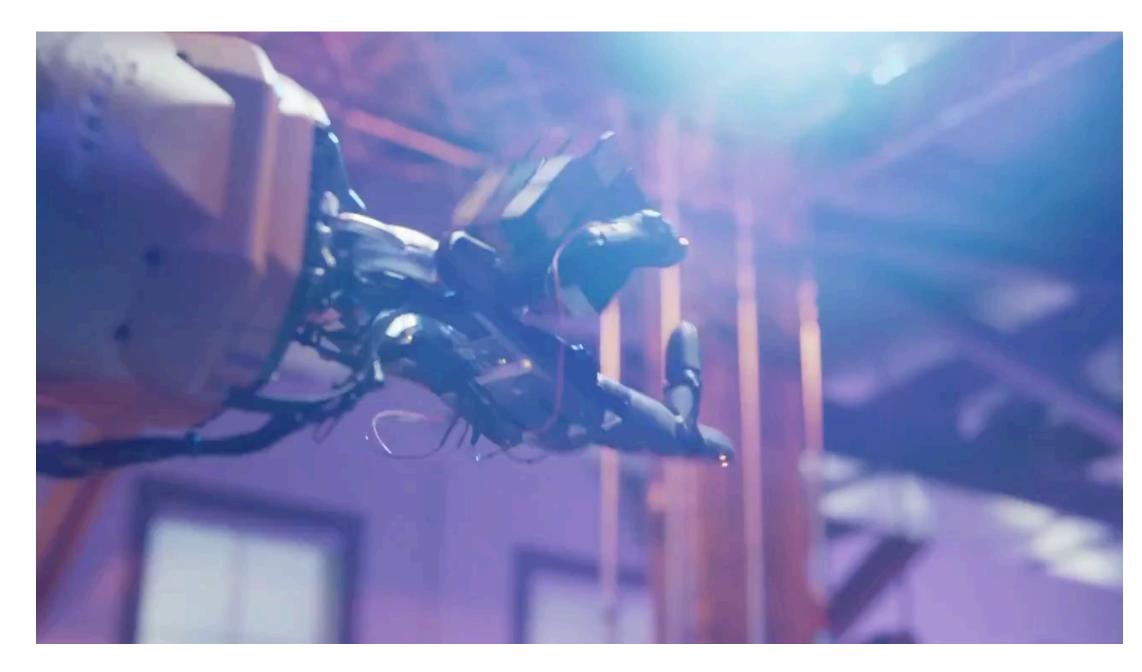
• Sample complexity can be as large as min($|\Theta|, 2^T$)

Dexterous Robotic Hand Manipulation
OpenAl, '19



• Sample complexity can be as large as min($|\Theta|, 2^T$)

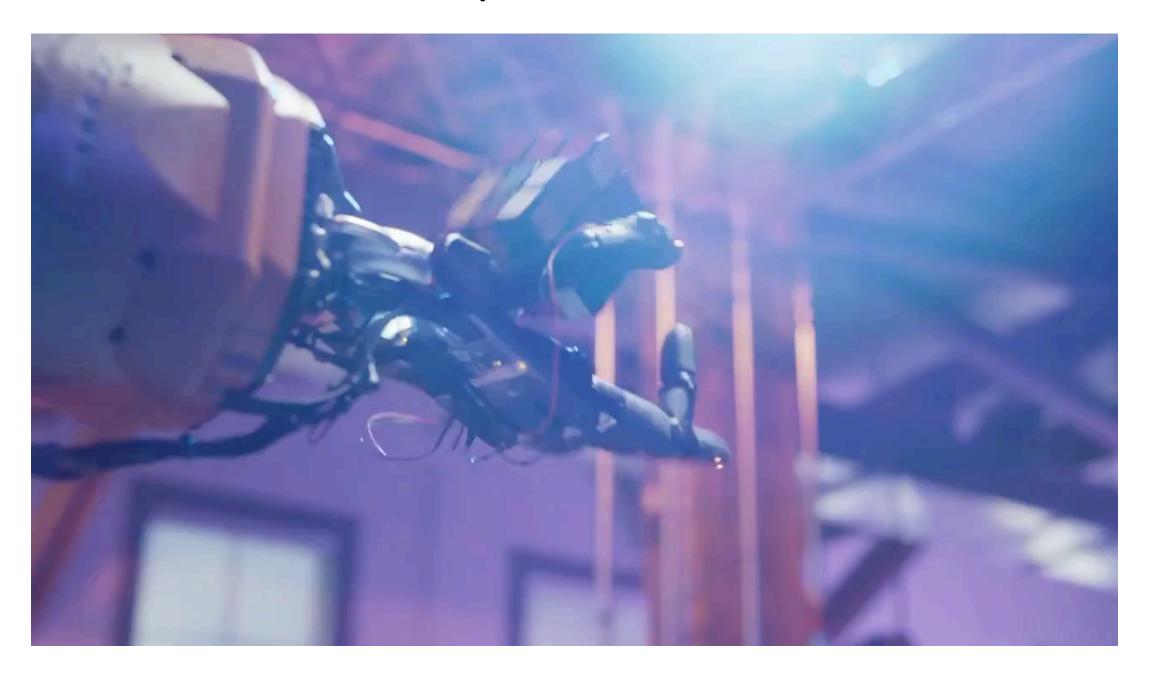
Dexterous Robotic Hand Manipulation
OpenAl, '19



• Sample complexity can be as large as min($|\Theta|, 2^T$)

Large state/action spaces

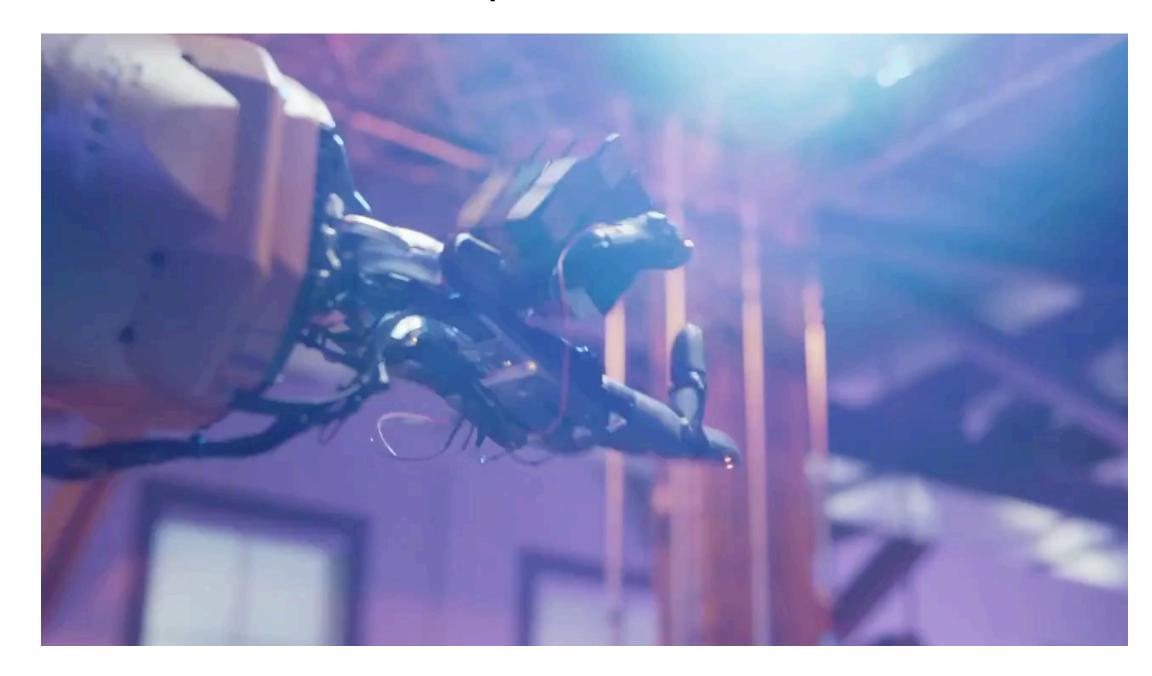
Dexterous Robotic Hand Manipulation
OpenAl, '19



• Sample complexity can be as large as min($|\Theta|, 2^T$)

Large state/action spaces

Dexterous Robotic Hand Manipulation
OpenAl, '19

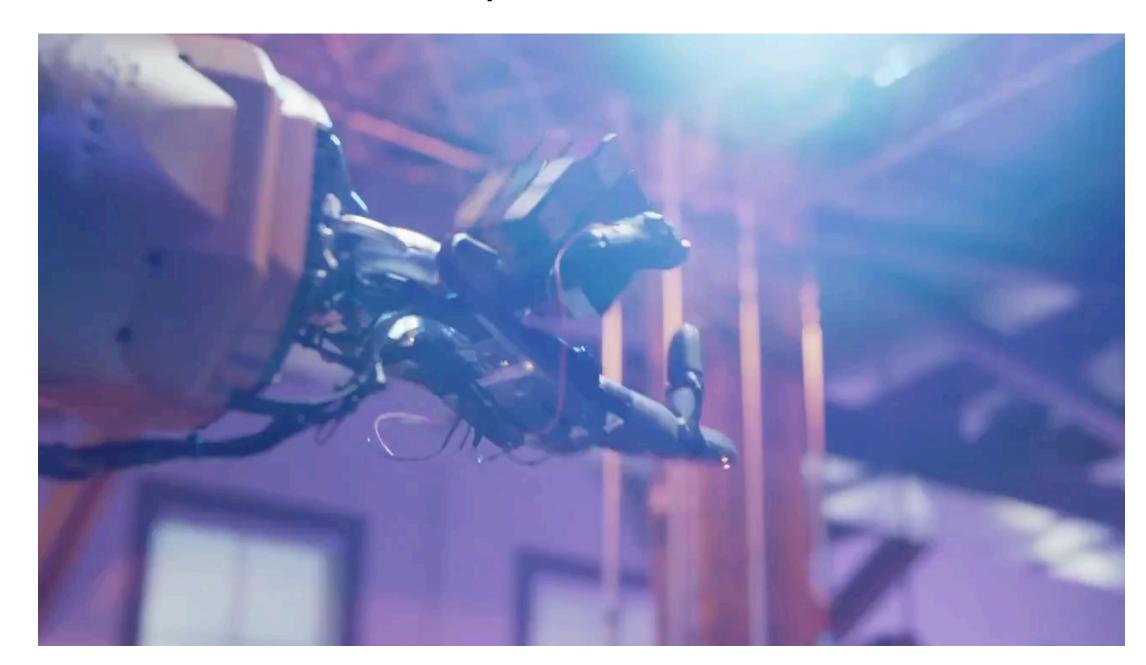


• Sample complexity can be as large as min($|\Theta|, 2^T$)

Large state/action spaces

Exploration

Dexterous Robotic Hand Manipulation
OpenAl, '19

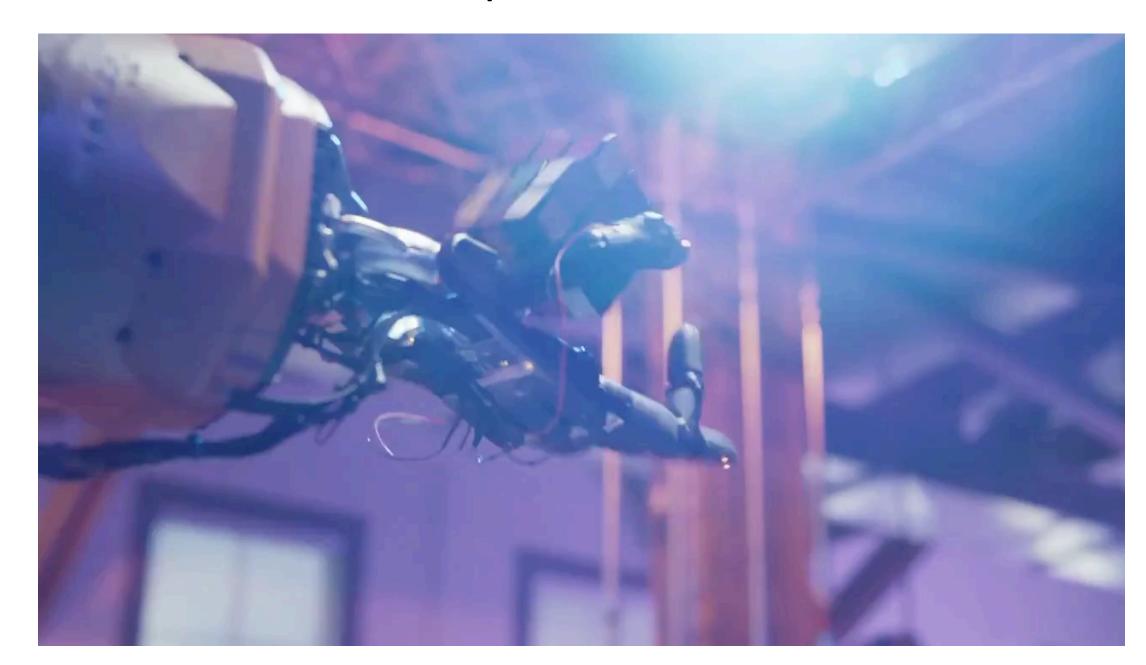


• Sample complexity can be as large as min($|\Theta|, 2^T$)

Large state/action spaces

Exploration

Dexterous Robotic Hand Manipulation
OpenAl, '19



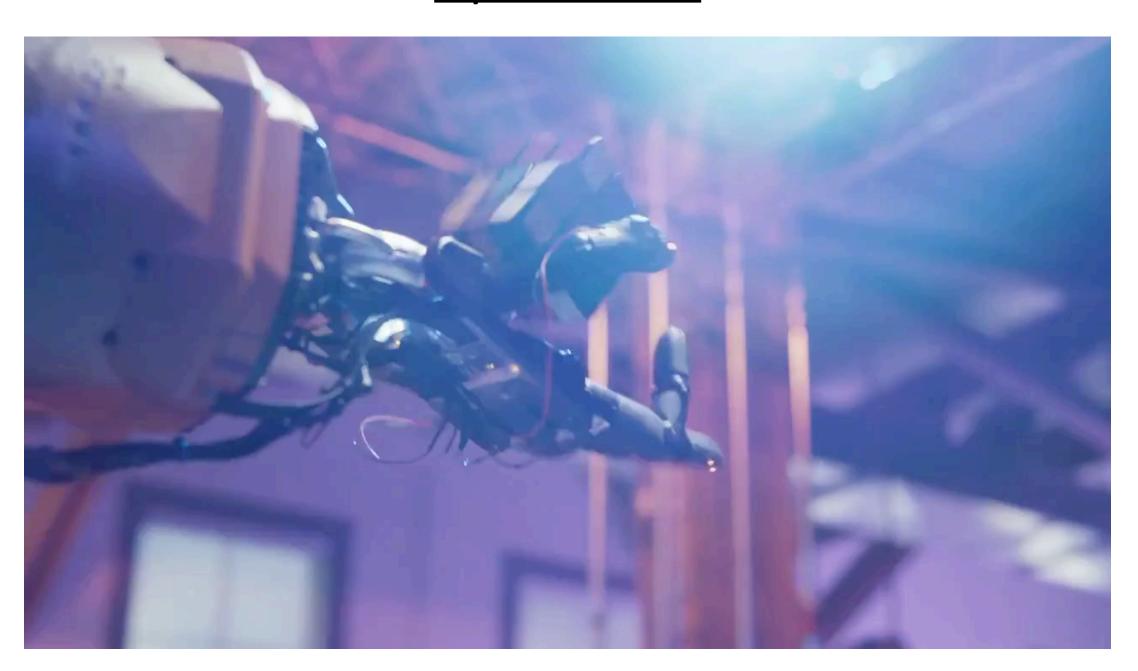
• Sample complexity can be as large as $min(|\Theta|, 2^T)$

Large state/action spaces

Exploration

Credit assignment problem

Dexterous Robotic Hand Manipulation
OpenAl, '19



 Supply Chain is about buying, storing, and transporting goods.

- Supply Chain is about buying, storing, and transporting goods.
- Amazon has been running it's Supply Chain for decades now
 - There is a lot of historical "off-policy" data
 - How do we use it?
 - Concern: counterfactual issue?

- Supply Chain is about buying, storing, and transporting goods.
- Amazon has been running it's Supply Chain for decades now
 - There is a lot of historical "off-policy" data
 - How do we use it?
 - Concern: counterfactual issue?
- This talk: how can we use this data to solve the inventory management problem?

- Supply Chain is about buying, storing, and transporting goods.
- Amazon has been running it's Supply Chain for decades now
 - There is a lot of historical "off-policy" data
 - How do we use it?
 - Concern: counterfactual issue?
- This talk: how can we use this data to solve the inventory management problem?

Supply Chain Hurdles Will Outlast Pandemic, White House Says

The administration's economic advisers see climate change and other factors complicating global trade patterns for years to come.

Outline

Can we use historical data to solve inventory management problems in supply chain?

- Part I: Utilizing Historical Data
- Part II: Moving to real-world inventory management problems
- Part III: Real World Results

Deep Inventory Management

Dhruv Madeka

Amazon, maded@amazon.com

Kari Torkkola

Amazon, karito@amazon.com

Carson Eisenach

Amazon, ceisen@amazon.com

Anna Luo

Pinterest*, annaluo676@gmail.com

Dean P. Foster

 $Amazon,\,foster@amazon.com$

Sham M. Kakade

Amazon, Harvard University, shamisme@amazon.com

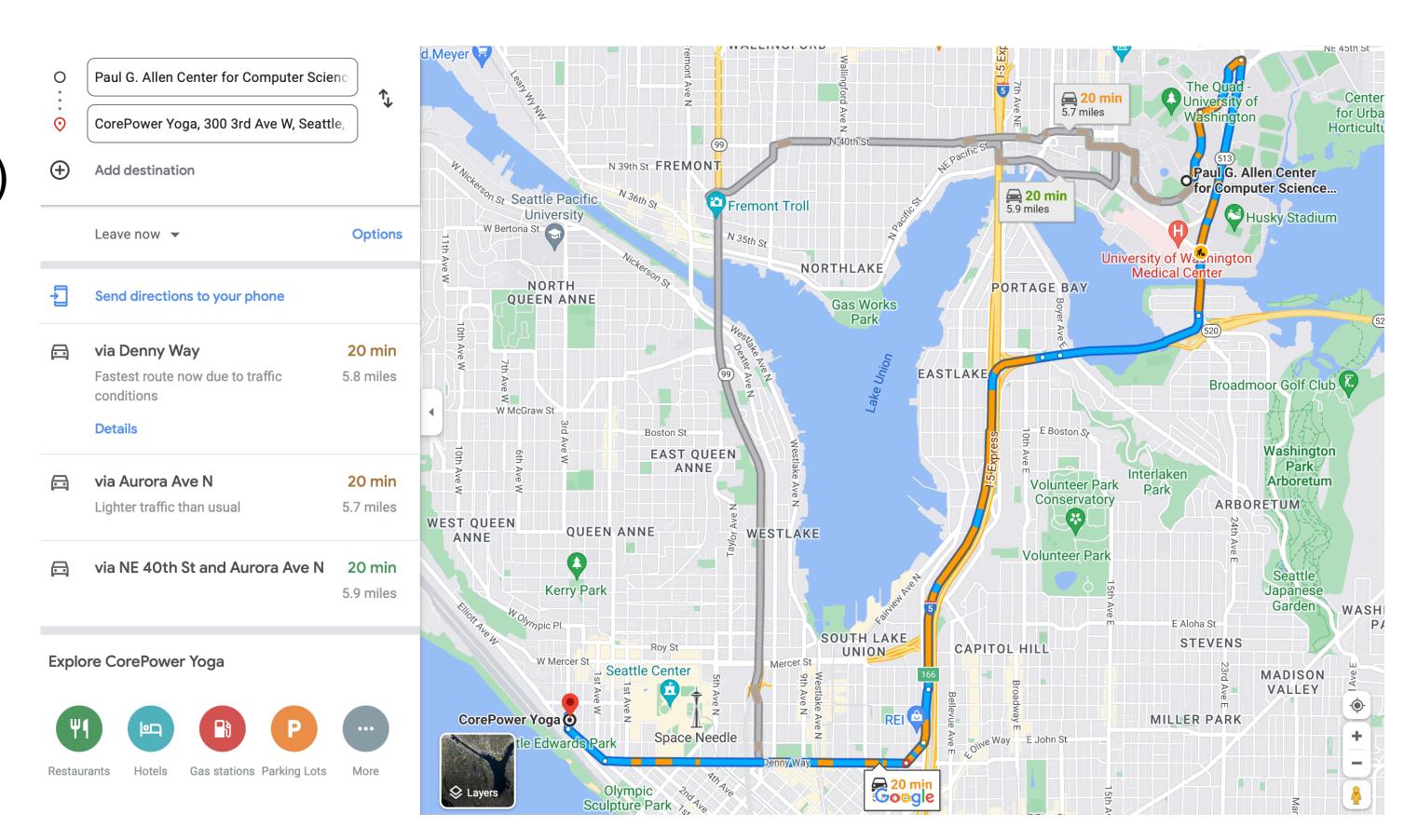
Largely based on this paper: arxiv/2210.03137

I: Utilizing historical data

Warm up: Vehicle Routing

(when using historical data might be ok)

- We want a good policy for routing a single car.
- Policy π: features -> directions features:
 time of day, holiday indicators, current traffic, sports games, accidents, location, weather,
- Historical Data: suppose we have logged historical data of features
- Backtesting policies:
 - Key idea: a single route minimally affects traffic
 - Counterfactual: with the historical data, we can see what would have happened with another policy.



 We want to route a whole fleet of self-driving taxis.

- We want to route a whole fleet of self-driving taxis.
- Policy π : features -> directions
 - features:

customer demand, time of day, holiday indicators, current traffic, sports games, accidents, location, weather...

- We want to route a whole fleet of self-driving taxis.
- Policy π : features -> directions
 - features:

customer demand, time of day, holiday indicators, current traffic, sports games, accidents, location, weather...

 Historical Data: suppose we have logged historical data of features

- We want to route a whole fleet of self-driving taxis.
- Policy π : features -> directions
 - features:

customer demand, time of day, holiday indicators, current traffic, sports games, accidents, location, weather...

- Historical Data: suppose we have logged historical data of features
- Backtesting policies:
 - Key idea: a small fleet route may have small affects on traffic.
 - Counterfactual: with the historical data, we can see what would have happened with another policy.

Time	Inventory	Demand	Order	Revenue

Price=	\$2
Cost=	\$1

Time	Inventory	Demand	Order	Revenue
0	100	20	-	40

Time	Inventory	Demand	Order	Revenue
0	100	20	_	40
0	80	_	10	-10

Time	Inventory	Demand	Order	Revenue
0	100	20	_	40
0	80		10	-10
1	90	20	_	40

Time	Inventory	Demand	Order	Revenue
0	100	20	-	40
0	80	-	10	-10
1	90	20	-	40
1	70	_	50	-50

Time	Inventory	Demand	Order	Revenue
0	100	20	-	40
0	80	-	10	-10
1	90	20		40
1	70	_	50	-50
2	120	60	_	120

Supply Chain Data

Time	Inventory	Demand	Order	Revenue
0	100	20	-	40
0	80	_	10	-10
1	90	20	-	40
1	70	_	50	-50
2	120	60		120
2	60	_	10	-10

- Current order doesn't impact future demand.
 - This allows us to backtest!

Time	Inventory	Demand	Order	Revenue

- Current order doesn't impact future demand.
 - This allows us to backtest!

Time	Inventory	Demand	Order	Revenue
0	100	20	_	40

- Current order doesn't impact future demand.
 - This allows us to backtest!

Time	Inventory	Demand	Order	Revenue
0	100	20	_	40
0	80		10-40	-10 - 40

- Current order doesn't impact future demand.
 - This allows us to backtest!

Time	Inventory	Demand	Order	Revenue
0	100	20	_	40
0	80		10 <i>40</i>	-10 - 40
1	<u>90</u> 120	20	_	40

- Current order doesn't impact future demand.
 - This allows us to backtest!

Time	Inventory	Demand	Order	Revenue
0	100	20	_	40
0	80		10 40	-10 - 40
1	<u>90</u> 120	20	_	40
1	70 <i>100</i>	_	- 50 - <i>20</i>	<u>-50</u> - 20

- Current order doesn't impact future demand.
 - This allows us to backtest!

Time	Inventory	Demand	Order	Revenue
0	100	20	_	40
0	80		10-40	-10 - 40
1	<u>90</u> 120	20	_	40
1	70 <i>100</i>	_	-50- <i>20</i>	<u>-50</u> - 20
2	120	60	_	120
2	60	_	10	-10

- Current order doesn't impact future demand.
 - This allows us to backtest!

Time	Inventory	Demand	Order	Revenue
0	100	20	_	40
0	80	-	10-40	-10 - 40
1	<u>90</u> 120	20	_	40
1	70 <i>100</i>	_	-50- <i>20</i>	<u>-50</u> - 20
2	120	60		120
2	60	_	10	-10

- Current order doesn't impact future demand.
 - This allows us to backtest!
 - Empirically, backlog due to unmet demand does not look significant.¹

• Growing literature around a class of MDPs where a large part of the state is driven by an exogenous noise process [Efroni et al 2021, Sinclair et al 2022]

• Growing literature around a class of MDPs where a large part of the state is driven by an exogenous noise process [Efroni et al 2021, Sinclair et al 2022]

- Growing literature around a class of MDPs where a large part of the state is driven by an exogenous noise process [Efroni et al 2021, Sinclair et al 2022]
- A formalization of the model:

- Growing literature around a class of MDPs where a large part of the state is driven by an exogenous noise process [Efroni et al 2021, Sinclair et al 2022]
- A formalization of the model:
 - Action a_t : how much you buy

- Growing literature around a class of MDPs where a large part of the state is driven by an exogenous noise process [Efroni et al 2021, Sinclair et al 2022]
- A formalization of the model:
 - Action a_t: how much you buy
 - Exogenous random variables: evolving under \Pr and not dependent on our actions $(Demand_t, Price_t, Cost_t, Lead\ Time_t, Covariates_t) := s_t$
 - Controllable part (inventory) I_t : evolution is dependent on our action.
 - $I_t = \max(I_{t-1} + a_{t-1} D_t, 0)$ (and suppose we start at I_0).

- Growing literature around a class of MDPs where a large part of the state is driven by an exogenous noise process [Efroni et al 2021, Sinclair et al 2022]
- A formalization of the model:
 - Action a_t: how much you buy
 - Exogenous random variables: evolving under \Pr and not dependent on our actions $(Demand_t, Price_t, Cost_t, Lead Time_t, Covariates_t) := s_t$
 - Controllable part (inventory) I_t : evolution is dependent on our action.
 - $I_t = \max(I_{t-1} + a_{t-1} D_t, 0)$ (and suppose we start at I_0).
 - Reward is just the sum of profits: $r(s_t, I_t, a_t) := \text{Price}_t \times \min(\text{Demand}_t, I_t) \text{Cost}_t \times a_t$

- Growing literature around a class of MDPs where a large part of the state is driven by an exogenous noise process [Efroni et al 2021, Sinclair et al 2022]
- A formalization of the model:
 - Action a_t: how much you buy
 - Exogenous random variables: evolving under \Pr and not dependent on our actions $(Demand_t, Price_t, Cost_t, Lead Time_t, Covariates_t) := s_t$
 - Controllable part (inventory) I_t : evolution is dependent on our action.
 - $I_t = \max(I_{t-1} + a_{t-1} D_t, 0)$ (and suppose we start at I_0).
 - Reward is just the sum of profits: $r(s_t, I_t, a_t) := \text{Price}_t \times \min(\text{Demand}_t, I_t) \text{Cost}_t \times a_t$

- Growing literature around a class of MDPs where a large part of the state is driven by an exogenous noise process [Efroni et al 2021, Sinclair et al 2022]
- A formalization of the model:
 - Action a_t: how much you buy
 - Exogenous random variables: evolving under \Pr and not dependent on our actions $(Demand_t, Price_t, Cost_t, Lead Time_t, Covariates_t) := s_t$
 - Controllable part (inventory) I_t : evolution is dependent on our action.
 - $I_t = \max(I_{t-1} + a_{t-1} D_t, 0)$ (and suppose we start at I_0).
 - Reward is just the sum of profits: $r(s_t, I_t, a_t) := \text{Price}_t \times \min(\text{Demand}_t, I_t) \text{Cost}_t \times a_t$
- Learning setting:

• Growing literature around a class of MDPs where a large part of the state is driven by an exogenous noise process [Efroni et al 2021, Sinclair et al 2022]

A formalization of the model:

- Action a_t: how much you buy
- Exogenous random variables: evolving under \Pr and not dependent on our actions $(\mathsf{Demand}_t, \mathsf{Price}_t, \mathsf{Cost}_t, \mathsf{Lead} \ \mathsf{Time}_t, \mathsf{Covariates}_t) := s_t$
- Controllable part (inventory) I_t : evolution is dependent on our action.
 - $I_t = \max(I_{t-1} + a_{t-1} D_t, 0)$ (and suppose we start at I_0).
- Reward is just the sum of profits: $r(s_t, I_t, a_t) := \text{Price}_t \times \min(\text{Demand}_t, I_t) \text{Cost}_t \times a_t$

Learning setting:

• Data collection: We observe N historical trajectories, where each sequence is sampled $s_1, \dots, s_T \sim \Pr$

• Growing literature around a class of MDPs where a large part of the state is driven by an exogenous noise process [Efroni et al 2021, Sinclair et al 2022]

A formalization of the model:

- Action a_t: how much you buy
- Exogenous random variables: evolving under \Pr and not dependent on our actions $(\mathsf{Demand}_t, \mathsf{Price}_t, \mathsf{Cost}_t, \mathsf{Lead} \, \mathsf{Time}_t, \mathsf{Covariates}_t) := s_t$
- Controllable part (inventory) I_t : evolution is dependent on our action.
 - $I_t = \max(I_{t-1} + a_{t-1} D_t, 0)$ (and suppose we start at I_0).
- Reward is just the sum of profits: $r(s_t, I_t, a_t) := \text{Price}_t \times \min(\text{Demand}_t, I_t) \text{Cost}_t \times a_t$

Learning setting:

- Data collection: We observe N historical trajectories, where each sequence is sampled $s_1, \ldots, s_T \sim \Pr$
- Goal: maximize our rewards cumulative reward over T periods

• Growing literature around a class of MDPs where a large part of the state is driven by an exogenous noise process [Efroni et al 2021, Sinclair et al 2022]

A formalization of the model:

- Action a_t: how much you buy
- Exogenous random variables: evolving under \Pr and not dependent on our actions $(Demand_t, Price_t, Cost_t, Lead\ Time_t, Covariates_t) := s_t$
- Controllable part (inventory) I_t : evolution is dependent on our action.
 - $I_t = \max(I_{t-1} + a_{t-1} D_t, 0)$ (and suppose we start at I_0).
- Reward is just the sum of profits: $r(s_t, I_t, a_t) := \text{Price}_t \times \min(\text{Demand}_t, I_t) \text{Cost}_t \times a_t$

Learning setting:

- Data collection: We observe N historical trajectories, where each sequence is sampled $s_1, \dots, s_T \sim \Pr$
- Goal: maximize our rewards cumulative reward over T periods

$$V_T(\pi) = E_{\pi} \left[\sum_{t=1}^{T} \gamma^t r(s_t, I_t, a_t) \right]$$

Lots of time dependence!

- Lots of time dependence!
 - If you buy too much, you're left with the inventory for months!

- Lots of time dependence!
 - If you buy too much, you're left with the inventory for months!
 - Your actions (orders) affect the state at a random time later (Lead Time)

- Lots of time dependence!
 - If you buy too much, you're left with the inventory for months!
 - Your actions (orders) affect the state at a random time later (Lead Time)
 - Tons of correlation across time (Demand, Price, Cost)

- Lots of time dependence!
 - If you buy too much, you're left with the inventory for months!
 - Your actions (orders) affect the state at a random time later (Lead Time)
 - Tons of correlation across time (Demand, Price, Cost)
- We can explore (linear risk in every product)

Theorem [Madeka, Torkkola, Eisenach, Luo, F., Kakade '22]: Suppose we have a set of K policies $\Pi = \{\pi_1, ... \pi_K\}$, and we have N sampled exogenous paths. Then we can accurately backtest up to nearly $K \approx 2^N$ policies.

Theorem [Madeka, Torkkola, Eisenach, Luo, F., Kakade '22]:

Suppose we have a set of K policies $\Pi = \{\pi_1, ..., \pi_K\}$, and we have N sampled exogenous paths. Then we can accurately backtest up to nearly $K \approx 2^N$ policies.

Formally, for any $\delta \in (0,1)$, with probability greater than $1-\delta$ - we have that for all $\pi \in \Pi$:

$$|V_T(\pi) - \hat{V}_T(\pi)| \le T\sqrt{\frac{\log(K/\delta)}{N}}$$

(assuming the reward r_t is bounded by 1).

Theorem [Madeka, Torkkola, Eisenach, Luo, F., Kakade '22]:

Suppose we have a set of K policies $\Pi = \{\pi_1, ..., \pi_K\}$, and we have N sampled exogenous paths. Then we can accurately backtest up to nearly $K \approx 2^N$ policies.

Formally, for any $\delta \in (0,1)$, with probability greater than $1-\delta$ - we have that for all $\pi \in \Pi$:

$$|V_T(\pi) - \hat{V}_T(\pi)| \le T\sqrt{\frac{\log(K/\delta)}{N}}$$

(assuming the reward r_t is bounded by 1).

Implications:

Theorem [Madeka, Torkkola, Eisenach, Luo, F., Kakade '22]:

Suppose we have a set of K policies $\Pi = \{\pi_1, ..., \pi_K\}$, and we have N sampled exogenous paths. Then we can accurately backtest up to nearly $K \approx 2^N$ policies.

Formally, for any $\delta \in (0,1)$, with probability greater than $1-\delta$ - we have that for all $\pi \in \Pi$:

$$|V_T(\pi) - \hat{V}_T(\pi)| \le T\sqrt{\frac{\log(K/\delta)}{N}}$$

(assuming the reward r_t is bounded by 1).

- Implications:
 - We can optimize a neural policy on the past data.

Theorem [Madeka, Torkkola, Eisenach, Luo, F., Kakade '22]:

Suppose we have a set of K policies $\Pi = \{\pi_1, ... \pi_K\}$, and we have N sampled exogenous paths. Then we can accurately backtest up to nearly $K \approx 2^N$ policies.

Formally, for any $\delta \in (0,1)$, with probability greater than $1-\delta$ - we have that for all $\pi \in \Pi$:

$$|V_T(\pi) - \hat{V}_T(\pi)| \le T\sqrt{\frac{\log(K/\delta)}{N}}$$

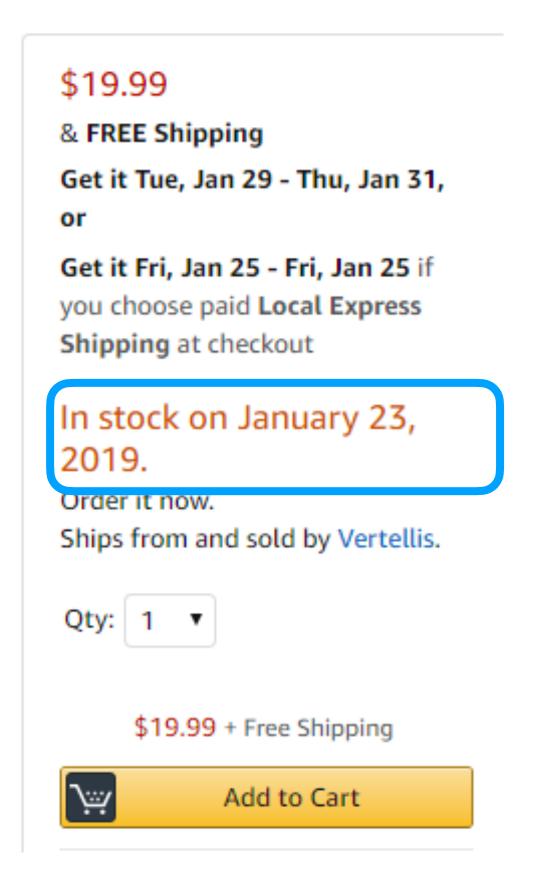
(assuming the reward r_t is bounded by 1).

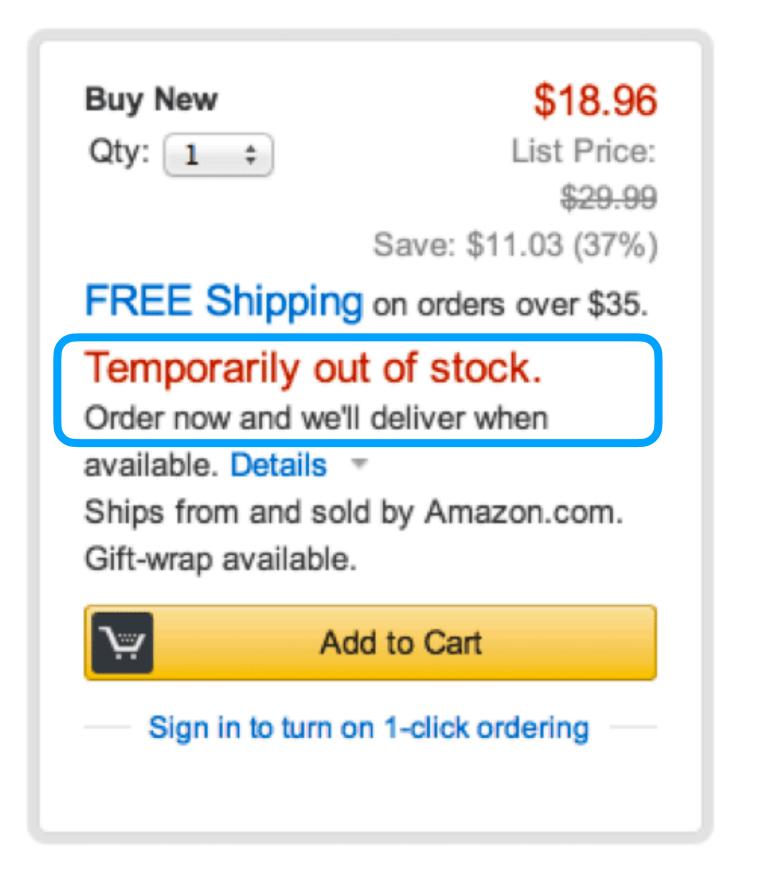
Implications:

- We can optimize a neural policy on the past data.
- In the usual RL setting (not exogenous), we would have an amplification factor of (at least) $\min\{2^T, K\}$, using historical data due to the counterfactual issue.

Real-world Issue: Censored Demand

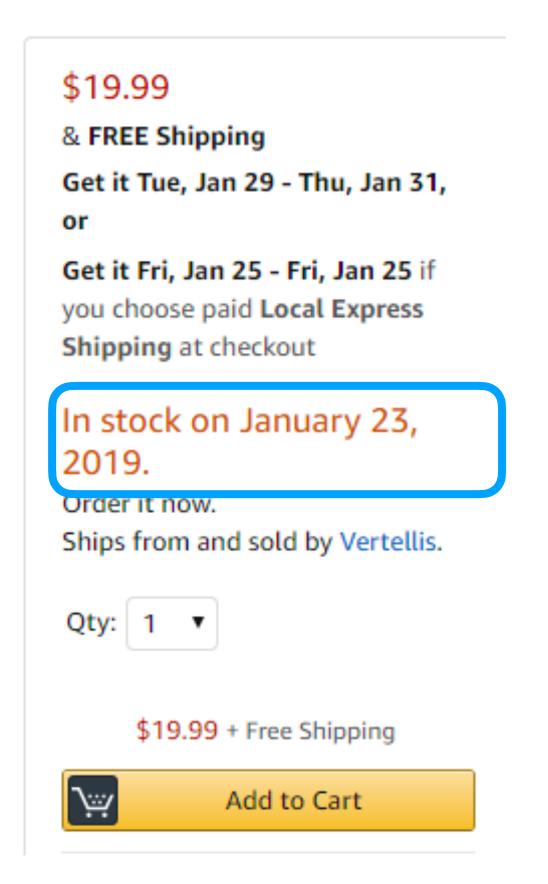
• When demand ≥ inventory, what customers see:

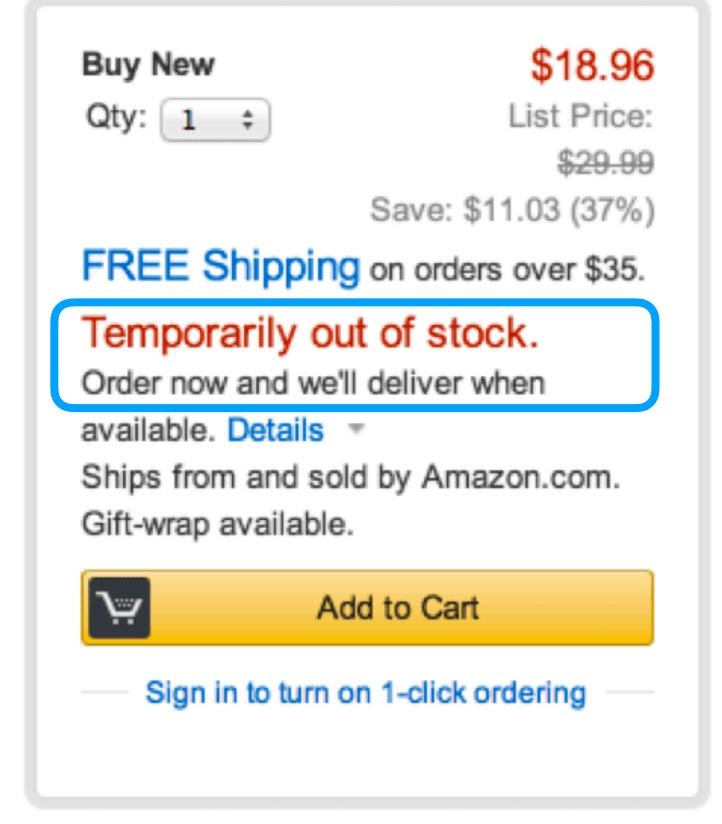




Real-world Issue: Censored Demand

When demand ≥ inventory, what customers see:





We only observe sales not the demand:

Sales := min(Demand, Inventory)

Can we still backtest?

Our historical data is then censored....

Sales := min(Demand, Inventory)

```
Price= $2
Cost= $1
```

Our historical data is then censored....

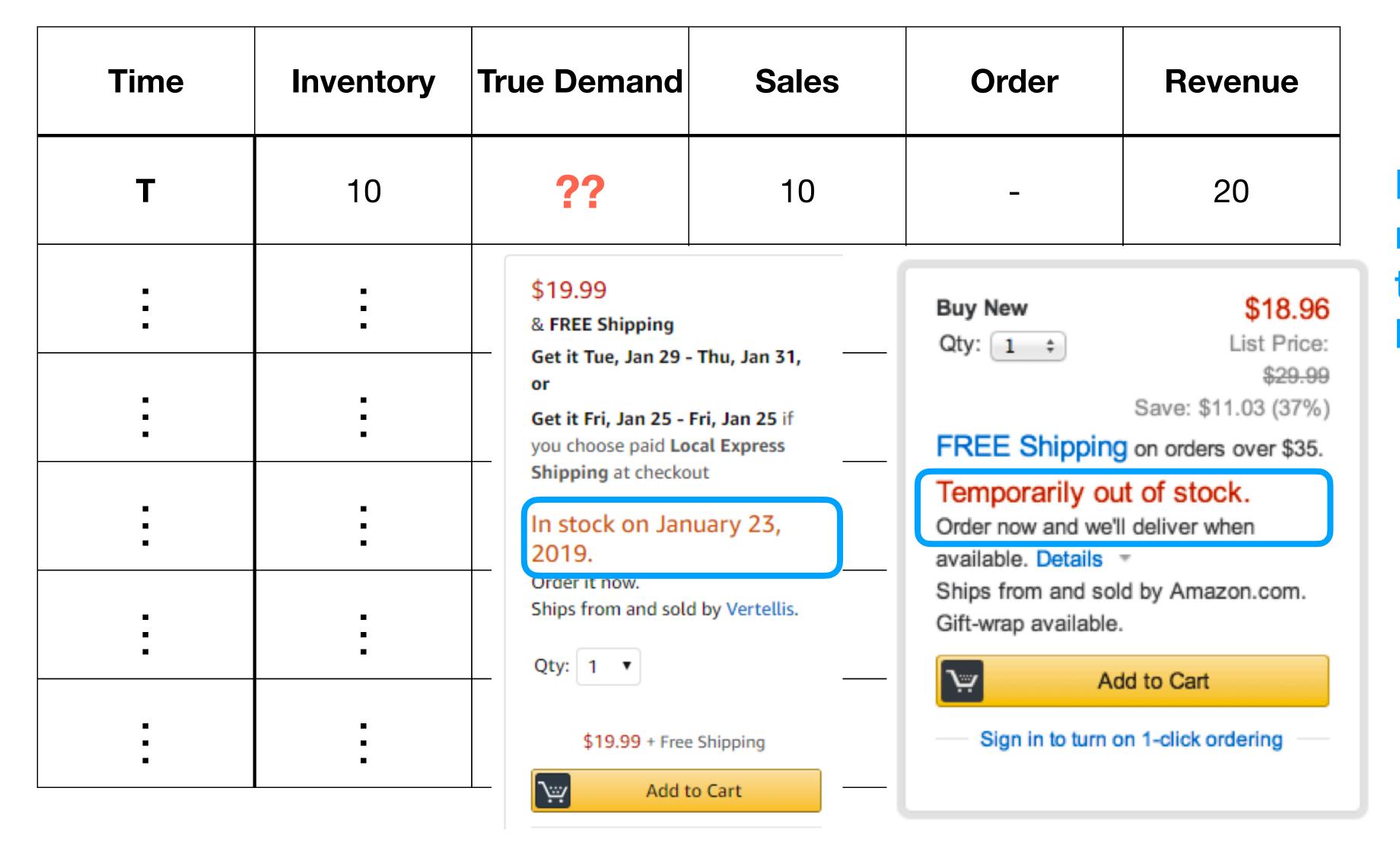
Sales := min(Demand, Inventory)

Time	Inventory	True Demand	Sales	Order	Revenue
T	10	??	10	_	20
-	- -	\$19.99 & FREE Shipping Get it Tue, Jan 29 - Thu, Jan 31, or Get it Fri, Jan 25 - Fri, Jan 25 if you choose paid Local Express Shipping at checkout In stock on January 23, 2019. Order It now. Ships from and sold by Vertellis. Qty: 1 \$19.99 + Free Shipping Add to Cart		Buy New Qty: 1 ‡	\$18.96 List Price:
- -	• •			\$29.99 Save: \$11.03 (37%) FREE Shipping on orders over \$35.	
- - -	= =			Temporarily out of stock. Order now and we'll deliver when available. Details Ships from and sold by Amazon.com. Gift-wrap available. Add to Cart	
- -	= = =				
- -	•			Sign in to turn on 1-click ordering	

Price= \$2 Cost= \$1

Our historical data is then censored....

Sales := min(Demand, Inventory)

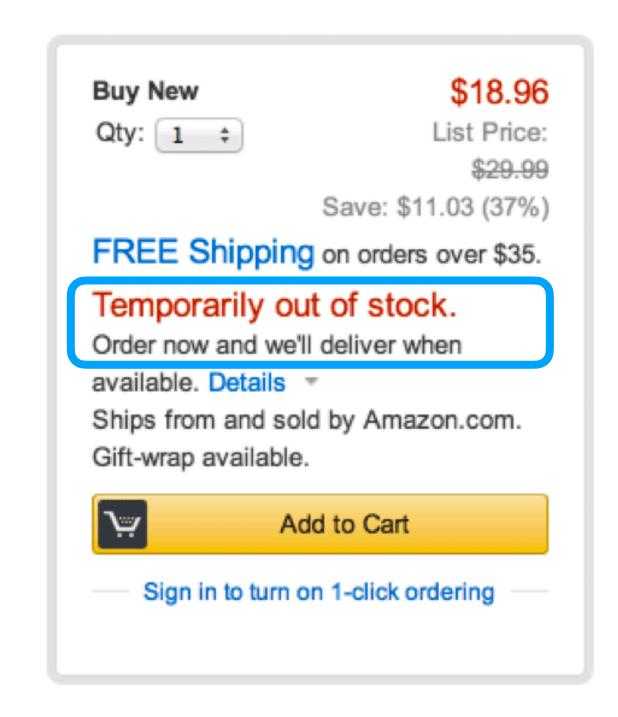


Price= \$2 Cost= \$1

If we could fill in the missing demand, then we could still backtest!

We have many observed historical covariates

- Covariates:
 Sales, Web Site, Glance Views, Product Text,
 Reviews
- Example: the #times customers look at an item gives us info about the unobserved demand.

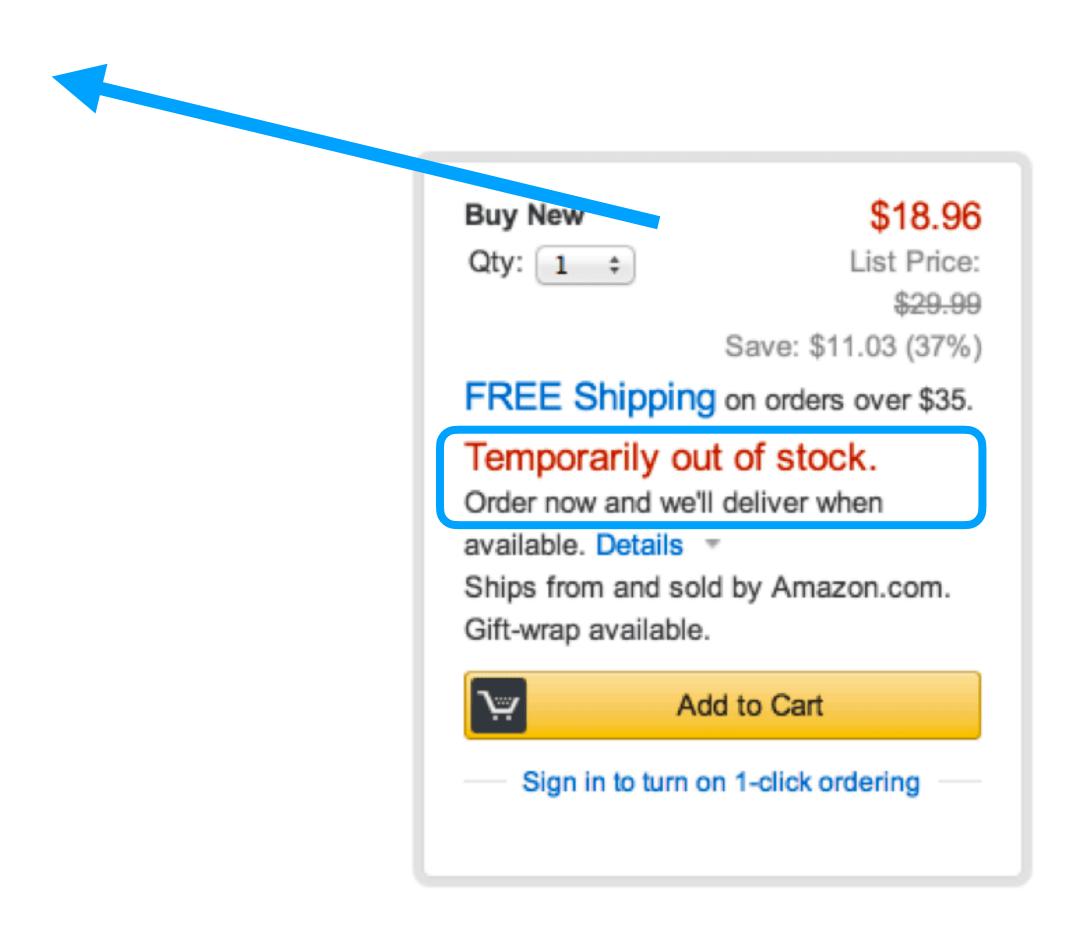


Let's forecast the missing variables from the observed covariates!
 P(Missing Data | Observed Data)

Uncensoring the data....

Sales := min(Demand, Inventory)

Price= \$2 Cost= \$1



Uncensoring the data....

Sales := min(Demand, Inventory)

Time	Inventory	True Demand	Sales	Order	Revenue	
T	10	40	10	_	20	
- -	• •	- - -	- - -	Buy New Qty: 1 ‡	\$18.96 List Price:	
- -	= = =	- -	- -	\$29.99 Save: \$11.03 (37%) FREE Shipping on orders over \$35.		
- - -	= = =	- -	- -	Temporarily out of stock. Order now and we'll deliver when available. Details		
- - -	■ ■	- - -	• •	Ships from and sole Gift-wrap available.		
•		- - -	- -	Sign in to turn on 1-click ordering		

Price= \$2 Cost= \$1

Uncensoring the data...

Sales := min(Demand, Inventory)

Time	Inventory	True Demand	Sales	Order	Revenue
T	10	40	10	_	20
- -	■ ■ ■	• •	•	Buy New Qty: 1 ‡	\$18.96 List Price:
= =	■ ■	• •	•	\$29.99 Save: \$11.03 (37%) FREE Shipping on orders over \$35.	
	■ ■ ■	•	•	Temporarily out of stock. Order now and we'll deliver when available. Details ▼ Ships from and sold by Amazon.com. Gift-wrap available. Add to Cart Sign in to turn on 1-click ordering	
	■ ■ ■	•	•		
	- - -	- -	•		

Price= \$2 Cost= \$1

Key idea:
Use covariates
(e.g. glance
views) to forecast
missing demand,
vendor lead
times, etc

Theorem [Madeka, Torkkola, Eisenach, Luo, F., Kakade 22]:
If we can forecast the missing variables accurately (in a total variation sense),
then we can backtest accurately. More formally,

Theorem [Madeka, Torkkola, Eisenach, Luo, F., Kakade 22]:

If we can forecast the missing variables accurately (in a total variation sense), then we can backtest accurately. More formally,

Setting: we have N sampled sequences $\{s_1^i, s_2^i, ..., s_T^i\}_{i=1}^N$, where M_i and O_i are the missing and observed exogenous variables in sequence i.

Forecast: $\widehat{\mathbb{P}}^i = \widehat{\Pr}(M_i | O_i)$ is our forecast of $\mathbb{P}^i = \Pr(M_i | O_i)$.

Assume: With pr. 1, forecasting has low error:
$$\frac{1}{N} \sum_{i=1}^{N} \text{TotalVar} \left(\mathbb{P}^i, \ \widehat{\mathbb{P}}^i \right) \le \epsilon_{\sup}.$$

Guarantee: For any $\delta \in (0,1)$, with pr. greater than $1-\delta$, for all $\pi \in \Pi$:

$$|V_T(\pi) - \hat{V}_T(\pi)| \le T \left(\epsilon_{\sup} + \sqrt{\frac{\log(K/\delta)}{N}} \right)$$

Theorem [Madeka, Torkkola, Eisenach, Luo, F., Kakade 22]:

If we can forecast the missing variables accurately (in a total variation sense), then we can backtest accurately. More formally,

Setting: we have N sampled sequences $\{s_1^i, s_2^i, \dots s_T^i\}_{i=1}^N$, where M_i and O_i are the missing and observed exogenous variables in sequence i.

Forecast: $\widehat{\mathbb{P}}^i = \widehat{\Pr}(M_i \mid O_i)$ is our forecast of $\mathbb{P}^i = \Pr(M_i \mid O_i)$.

Assume: With pr. 1, forecasting has low error: $\frac{1}{N} \sum_{i=1}^{N} \mathsf{TotalVar} \left(\mathbb{P}^i, \ \widehat{\mathbb{P}}^i \right) \le \epsilon_{\mathsf{sup}}.$

Guarantee: For any $\delta \in (0,1)$, with pr. greater than $1-\delta$, for all $\pi \in \Pi$:

$$|V_T(\pi) - \hat{V}_T(\pi)| \le T \left(\epsilon_{\sup} + \sqrt{\frac{\log(K/\delta)}{N}} \right)$$

Key idea: We can backtest even in the censored setting!

III: Training Policies & Empirical Results

- Collection of historical trajectories:
 - 1 million products
 - 104 weeks of data per product

- Collection of historical trajectories:
 - 1 million products
 - 104 weeks of data per product
- Uncensoring:
 - Demand
 - Vendor Lead Times

- Collection of historical trajectories:
 - 1 million products
 - 104 weeks of data per product
- Uncensoring:
 - Demand
 - Vendor Lead Times

- Collection of historical trajectories:
 - 1 million products
 - 104 weeks of data per product
- Uncensoring:
 - Demand
 - Vendor Lead Times

- Collection of historical trajectories:
 - 1 million products
 - 104 weeks of data per product

- Uncensoring:
 - Demand
 - Vendor Lead Times

- Policy gradient methods in a "gym":
 - "gym"
 → backtesting
 → simulator
 (note the "simulator" isn't a good world model).
 - The policy can depend on many features.
 (seasonality, holiday indicators, demand history, ASIN, text features)

Differentiable Control Problem

 Note that each term of our state evolution is a differentiable function of previous actions

$$I_t = \max(I_{t-1} + a_{t-1} - D_t, 0)$$

So, we can take gradients directly from our Reward through our policy

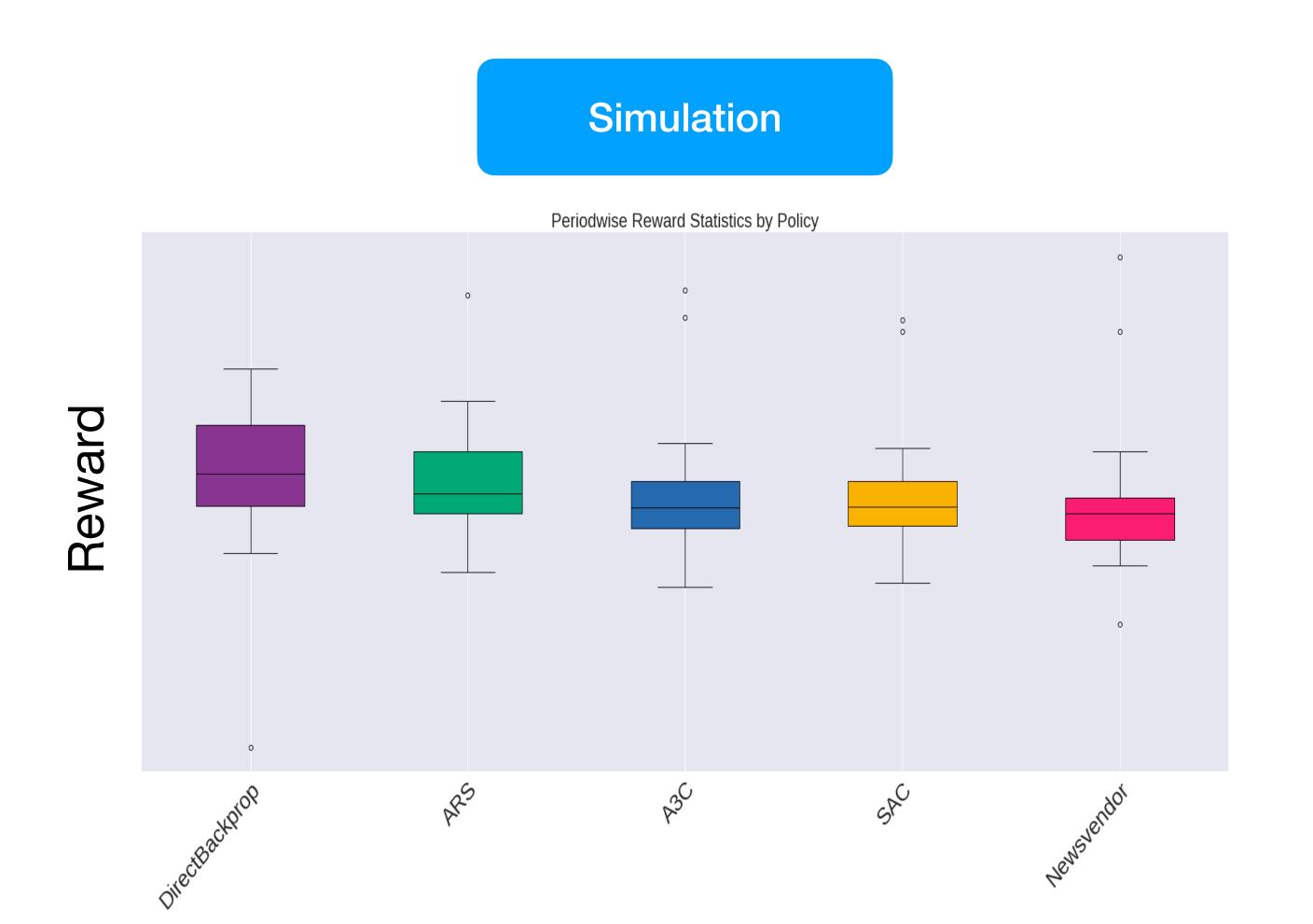
$$r(s_t, I_t, a_t) := \text{Price}_t \times \min(\text{Demand}_t, I_t) - \text{Cost}_t \times a_t$$

- This is our current production policy, called DirectBackprop
- Similar in spirit to Perturbation Analysis (Glasserman et al 1995), except it uses a neural policy

Sim to Real Transfer

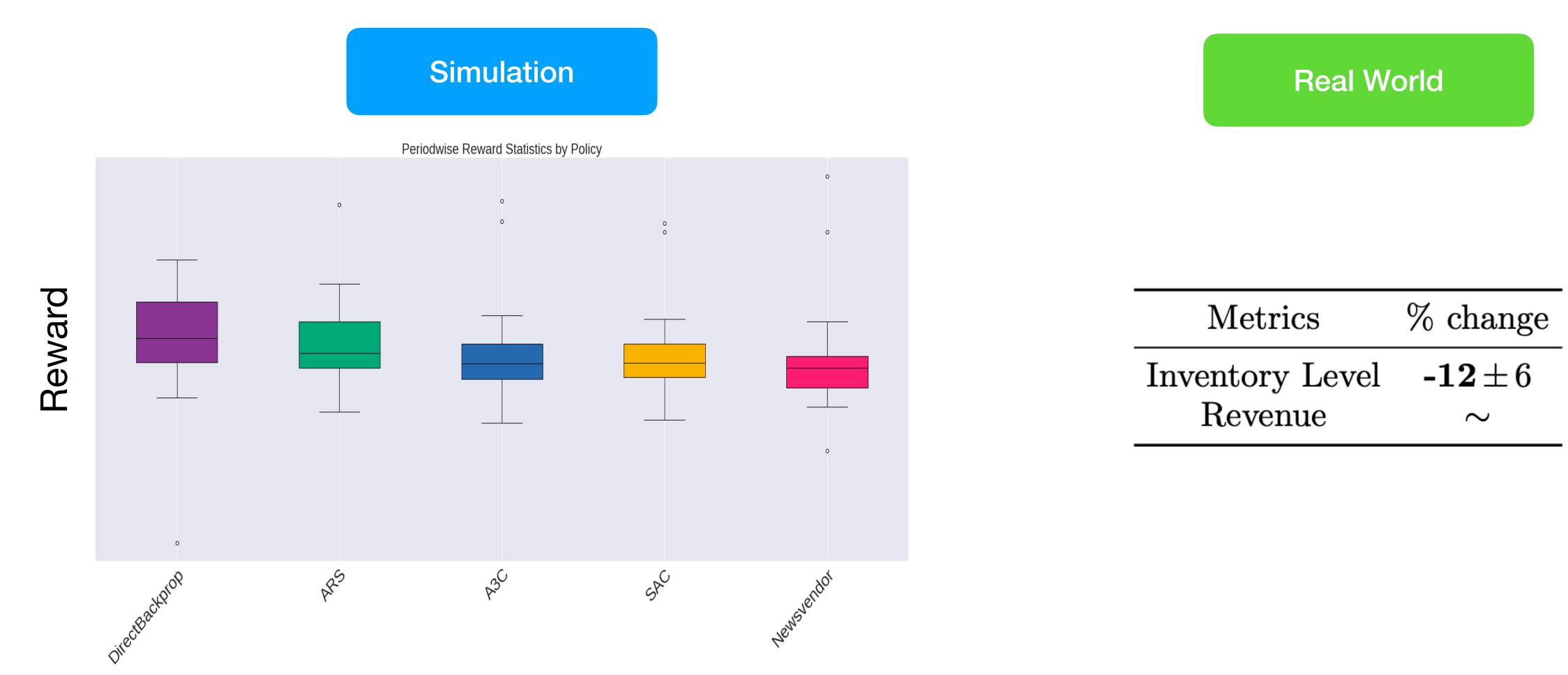
Sim to Real Transfer

• Sim: the backtest of DirectBackprop improves on Newsvendor.

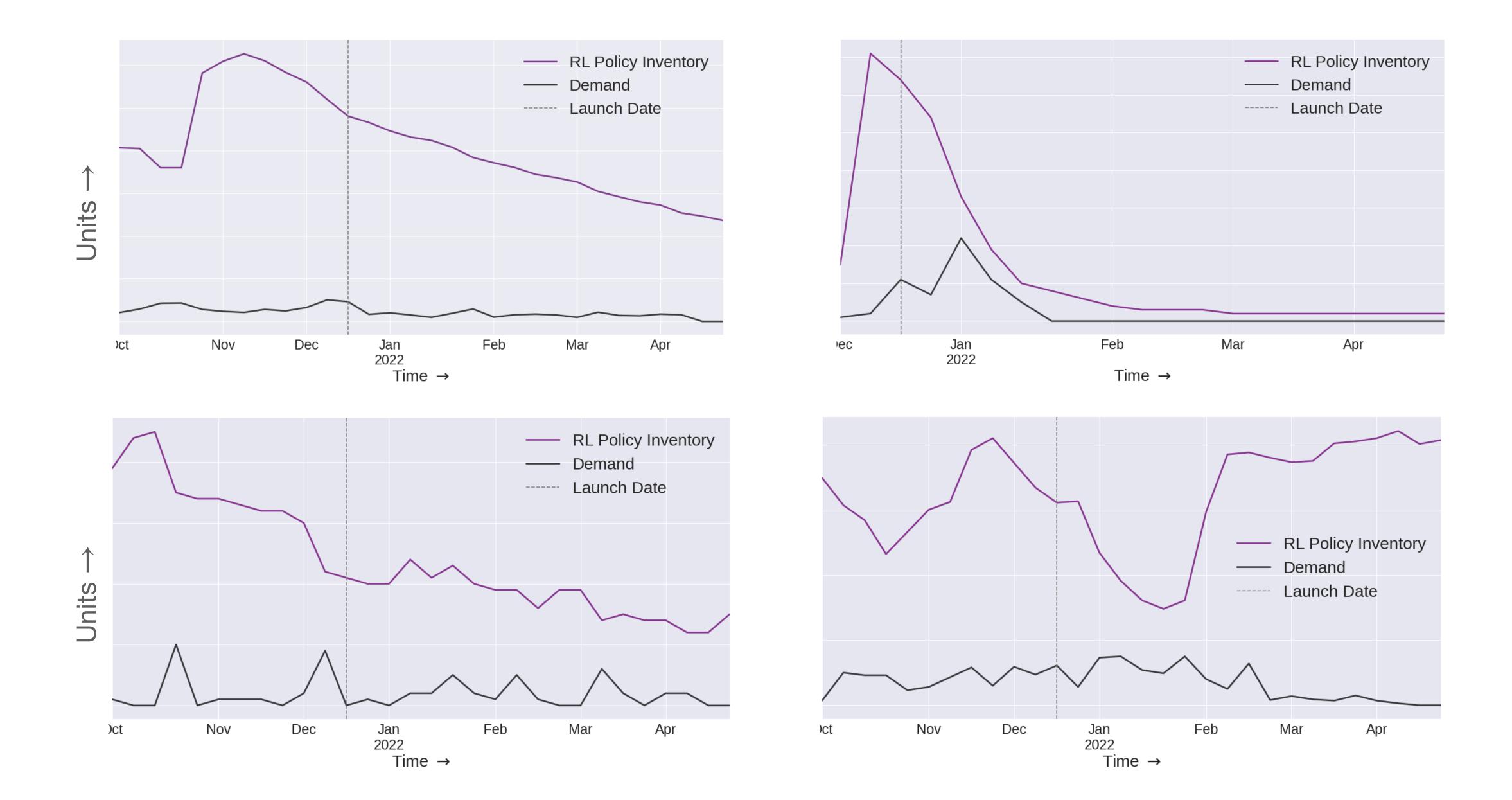


Sim to Real Transfer

- Sim: the backtest of DirectBackprop improves on Newsvendor.
- Real: DirectBackprop significantly reduces inventory without significantly reducing total revenue.



Anecdotally, RL has reasonable strategies in the real world...



Real World RL Challenges

• World is not perfectly exogenous (some terms may depend on our actions)

Cross product constraints are computationally intensive

Not every Supply Chain problem can be written in this framework

• There are a class of RL Problems that work in the real world!

There are a class of RL Problems that work in the real world!

 The exogenous assumption allows us to backtest any policy on historical data

There are a class of RL Problems that work in the real world!

The exogenous assumption allows us to backtest any policy on historical data

 A large number of classical Operations Research problems fall into this class of Interactive Decision-Making problems

• There are a class of RL Problems that work in the real world!

 The exogenous assumption allows us to backtest any policy on historical data

 A large number of classical Operations Research problems fall into this class of Interactive Decision-Making problems

Carson

Kari

Anna

Dhruv

Sham